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Abstract

This paper explores the suitability of two varieties of distributed

memory neural networks as trainable controllers for a simulated

robotics task. The task requires that two cameras observe an arbitrary

target point in space. Coordinates of the target on the camera image

planes are passed to a neural controller which must learn to solve the
inverse kinematics of a manipulator with one revolute and two prismatic

joints. Two new network designs are evaluated. The first called a radial

basis sparse distributed memory or RBSDM, approximates functional

mappings as sums of multivariate gaussians centered around previously
learned patterns. New pauems are categorized using gaussian distances

from learned examples with training patterns as stored as high

dimensional input addresses in a sparse distributed memory
architecture.

The second network types involved variations of Adaptive Vector

Quantizers or Self Organizing Maps. In these networks random, N

dimensional points are given local connectivities. They are then

exposed to training patterns and readjust their locations based on a

nearest neighbor rule. The winning point and its neighbors are dragged

differentially toward the new pattern, adjusting to minimize the elastic

global energy of the network. The result is a network that adaptively

forms an interpolating n-dimensional surface over the density of the
training sample set. A new learning rule is proposed called the

proportional winner rule, which dramatically simplifies problems in

learning rate and radius scheduling. A new network called an infolding

net is presented which has advantages of a self organizing map with

superior learning performance and potential for real time control.

Both approaches are evaluated based on their ability to interpolate

manipulator joint coordinates for simulated arm movement while

simultaneously performing stereo fusion of the camera data. Details of
the benchmark task developed to compare the two models are contained

in a companion report titled "Development of Sensor Based Kinematic
Models for Neural Network Controller Training" (Jorgensen 1990).

Comparisons are made with classical k-nearest neighbor pattern

recognition techniques and a procedure for application testing with real
hardware is described. 2

2. Acknowledgment: I would like to thank the Sparse Distributed Memory Group at RIACS for their sup-
port and helpful discussions during this research. In particular I would like to thank Dr. Doug Danforth for
his helpful suggestions regarding simplification of learning terms in a SOM, and Dr. Mike Raugh for provid-

ing the research environment which made this work possible.
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Introduction

An issue of increasing importance for automated space operations involves the

integration of multiple sensor inputs with robotic control. A number of difficult questions

about controller design inevitably occur as the complexity of required tasks and the

variability of the application environment increases. In certain situations (e.g. high

degrees of freedom, dynamic environments, or non-linearities) traditional methods to

formally specify controller behavior may not be computationally efficient with potential

system time constraints and environmental variability. This has led to an interest in

trainable forms of controllers.

One area offering considerable promise is artificial neuromorphic systems or 'neural

network' methods. Research in this field has been increasing in recent years. In many

cases, however, the evaluations of the methods have been confined to domains particularly

well suited in scale and problem type, e.g. visual pattern recognition. More recently

attention has been given to application of network methods to control 3. Among the more

vexing questions are whether network solutions can generalize to new situations, if they

can capture functions with nonlinear discontinuities, and if they can integrate human

knowledge and constraints. The present research was motivated by a desire to evaluate a

particular kind of network in the context of realistic problems. These were problems

which can be solved using current control techniques but represented a minimum

capability for neural networks if they were to have hope for addressing issues of much

greater difficulty NASA is confronting as part of the Space Exploration Initiative.

Camera 1 Camera 2

Figure 1.
Coordinated Movement

Figure 1 presents a typical situation which might occur in space-based assembly or

autonomous exploration. Two or more cameras (or other sensors) are sited at variable

positions. The task involves having the cameras fixate on a target and send location
coordinates to a controller which uses the coordinates to calculate joint angles. Two

mappings are required to complete this sequence. First, the relationships between camera

3. Miller, T.," Neural Robotics and Control", MIT Press, 1990.

Distributed Memory CommlIen September 20, 1990 3



projections must be unified so a pair of 2-D images correspond to a single 3-D point
(stereo fusion). Second, inverse kinematics must be solved to map x,y,z coordinates to

values in joint space at the correct position and orientation for the arm tip to touch the

target.

Because of complex interactions between the number of degrees of freedom and the

possible joint coordinates, this mapping does not necessarily have a unique inverse which

means practically that there may be many different joint combinations which can reach the

same point. In a companion volume to this report a benchmark is developed which can be

used to produce data for evaluating alternative neural network controller concepts. The
training information derived from this model consisted of a series of input/output pairs

composed of four camera coordinates and three joint space angles. This data was used in

the present paper to compare two different network approaches to control. Evaluation was
based upon the networks joint angle predictions for new camera coordinates relative to

exact angles derived from inverse kinematic equations of the arm and camera models.

Several questions motivated the investigation. First, earlier research '1 indicated that

for aircraft landing control, methods which relied on nonlinear regression (i.e. back

propagation) became very unstable when trained on data sets having discontinuities. Such

discontinuities were produced by abrupt system changes such as transitions in flight
control modes. Attempts to find a single smooth function accounting for the data resulted

in oscillations similar to the Gibbs phenomena in Fourier series.

This difficulty and issues associated with the generation and adequacy of training sets,

led to a search for alternative methods to perform control and ultimately to consideration

of distributed memory architectures. These included CMAC, SDM, and PNN networks in

which a control action for a particular system state is stored as an instance in a high

dimensional space. For these types of networks, when a new pattern is presented, output

values are generated based on similarity of the observed pattern to previous system

experiences. Pattern similaritymay be defined in a number of ways such as using a
Bayesian classification (PNN) _, nearest neighborhoods (CMAC) o, or Hamming distances
in a memory address space (SDM). 7

Distributed memory models such as the CMAC network have certain design

advantages in that they are simple to train and are not subject to sudden discontinuities if

present in the function they are modelling. Their biggest disadvantage is that they can

require a large amount of storage that increases as a function of the dimensionality of the

problem. Further they may not interpolatedepending upon their design but return only the

4. Jorgensen C. and Schley C., Development of a Neural Network Benchmark for Autolander Control,"

To appear in Neural Networks for Control, 1".Miller E., M1T Press, 1990

5. Specht, D., "Probabilistic Neural Networks, "Neural Networks Journal, Vol. 3, Number 1,1990.

6. Albus, J.," Brains, Behavior, and Robotics," Byte Publications, 1981.

7. Kinerva, P, "Sparse Distributed Memory," MIT press, 1988.
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nearest neighbor among previously stored addresses (as will be shown in this paper,

variations on distributed memory models can compensate for some of these weaknesses).

Another category of networks called Self Organizing Maps (SOM) have a different

strength. Because they are inherently adaptive, they can adjust to changing phenomena,

interpolate using a predefined number of representative data points, and can be combined

to create composite interacting process models. 8 Their biggest disadvantage is that they

are very sensitive to learning parameters and their training schedules, must often be fine

tuned, have been traditionally applied to two-dimensional mapping problems, and can be

unstable depending upon neighborhood constraints.

A major motivator for the present research was handling data discontinuities, hence

questions about control adequacy were tested by requiring distributed networks to

integrate sensor data (multiple cameras) with manipulation (a simulated robotic arm). The

test environment included discontinuities at the limits of the robot arm joint angles so we

were able to test the ability of the current methods to deal with the type of conditions that

had proved difficult for backpropagation networks.

Since the benchmark problem included multiple cooperating devices, we were also

able to explore the potential of these networks to learn integrated system operations from

observation of correct input/output behaviors. Finally, the task environment was exactly

modeled by a simulation so it was possible to study how well the networks could

interpolate new values, react to changing resolution, and different learning rules.

Camera Model

Before presenting the specific networks that were developed, a brief description of the

equations underlying the learning problem will be presented. Given a vector of target

coordinates, what we required was a function O such that:

O (x, y, z) _ (x 1, Yl, x2, }"2) where the subscripts refer to two camera viewpoints 1 and

2 respectively. Figure 2 illustrates the benchmark configuration used in this report..

In this figure, it can be seen that if we focus multiple cameras on a common target we

need to take into account the angle of the camera plane relative to the axis of the scene, the

field size onto which the image is projected, the distance between the centers of the

cameras and the focal point locations. Good methods have been developed for handling

the required transformations (rotation, skew, scale, and translation) using homogeneous

coordinate systems 9. For purposes of producing training data, we can simplify the

situation considerably by letting each viewpoint lie on the Z-X axis of the target object's

coordinate system 10. For example, each camera can be placed so its projection plane P is

8. Martinetz, T.,Ritter, H., and Shulten, K. "Three Dimensional Neural Net for Learning V'tsuomotor

Coordination of a Robot Arm, IEEE Transaction on Neural Networks Vol. 1, No. 1, March 1990.

9. Ballard, D. and Brown, C, "Computer Vision" Prentice Hall, 1982.
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parallel to the x axis. ff we let the focal plane also be an axis of one of the dimensions an

place the cameras a distance 1 unit from each other at Y = 0, then the relationship

between the focal plane coordinates for (Pl,ql) and the target point can be shown to bell:

f x Y}{Pl, ql} = (l+z)' (l+z)

where d is one half the distance between the center axis of the cameras and f is the focal

length. Similarly for camera 2 and point (P2,q2):

{Pzq2} = { 1-x Y )1-+z' l_z

These equations can be used to develop the camera image plane projections for

arbitrary viewpoints but it is also necessary to derive the inverse of this transformation in

order to have the set of relationships which must actually be learned by the neural network

to produce x,y,z coordinates from camera coordinates.These are:

10. Longuet-Higgins, H.C, "A Computer Algorithm for Reconslructing a Scene from Two

Projections" In Readings in computer vision, Morgan Kaufmann, 1987.

11. Jorgensen, C.C., "Development of a Robotic Benchmark Problem", RIACS Technical report, 1990.

DiltributP+dMt_raoryContmller_ September20. 1990 6



1 1 Pl ql
z= -1 x- y-

P2 + Pl Pl + P2 Pl + P2

Robot Arm Model

In addition to specification of the camera, it was also necessary to generate a model of

a robot arm. For the present paper, our need was for a three degree of freedom arm

extending its links within a unit volume. There are a number of decisions when generating

higher degree of freedom models. To clarify why the present set was chosen, some

background is helpful.

A robot arm is simply a combination of links and joints formed together in a chain

with one end fixed and one free. Each joint is driven by an actuator. The free end, also

called an end effector, is moved along a path by sequentially activating the joints. Thus it

is necessary to know the displacement of a joint at each point in time with respect to a

fixed reference called the base frame. A path for the end effector is then defined in terms

of the movement of this frame. The companion volume to this paper presents a detailed

discussion of the assumptions that must be made when generating an arm model.

For our purposes, a simple but useful arm model can be developed by ignoring some

of the parameters of full models. In particular, complexity can be dramatically reduced by

omitting link twist, permitting a revolute joint only at the base, and two prismatic joints,

one connecting the base to the first link, and one connecting the first link to the second.

The result is a manipulator such as Figure 3.

Joint 2

I / IIh_ ._..-.,_--L_ c Joint 1

[_ _ Revolute Joint 1

Figure 3.

Simple 3-D Arm

The forward and inverse kinematics of this manipulator can be derived as seen below.

Di'stribute.d Memory Controllers September 20. 1990 7



The forward relationships are solved trigonometrically using the law of cosines through

three intermediate terms based on theta one (the angle the arm is rotated on the x,y plane,

theta 2 (the angle the first link makes with the x,y plane, and theta 3 (the angle link two

makes with link one).

First we define the length d of a path between the center of the arm's base point and
link 2 as:

d = J ( link 1) 2 + (link2) 2 _ 21ink1 link 2 cos (O 3)

and the angle theta tilde that this link makes with the y,x plane as:

= 02 - acos ,,(.(°g+ (linkl)2--_TffT-_1(link2)2) )

We can then solve for the length of the radial projection r this segment makes on the

y,x, plane as:

r = dcos (0)

from which it follows that:

z = dsin (0) y = rcos (01) x = rsin (01)

In a similar fashion, we can derive a closed form inverse kinematic for this

manipulator by defining d as:

d=,JY2+X2+z2

03 = acos (, ( (link121fnk_)2 + (�in k 2) 2 _ 02) )

(;)02 = asin + acos 2dlink 1

01= atan (;)

Based on the above specifications, the required relationships are specified to generate

l)istribulttl Memory Co_rollcn S¢ixnnber 20, 1990 g



training dam for training neural network controUers. The training task can be divided into

two parts shown in Figure 4. It is possible to use two neural networks, one for stereopsis

Positioning Error Feedback

Figure 4.

A Network Control Sequence

and one for control, or a single net taking camera input directly and outputing joint

coordinates. In the present paper we used the latter approach since it can be shown that the

two models can be made to link up automatically using one of the new networks that was

developed (the infolding network).

Depending upon the type of neural network chosen (function fitting or distributed

representation) and learning paradigm selected (such as supervised or unsupervised

learning) very different training methods may be required. For example, in the case of

distributed networks such as an SDM 12 or CMAC 13-,a major consideration is the

magnitude of samples required. With a self organizing map 14 a central training issue is

whether the particular sample contains an underlying distribution similar to that of the

process being sampled and what learning rate and neighborhood parameters should be

used. In both cases however, testing involves presentations of part of the samples and

evaluating the network's performance on the remaining points.

12. Kanerva, R "Sparse Distributed Memory," MIT Press, Cambridge, MA, 1988.

13. Albus, J.S., "A Theory of Cerebeilar Functions," Mathematical Biosciences, 10(1/2):25-61,1971.

14. Kohonen, T. "Self Organization and Associative Memory," Spring Series in Information Sciences,

Heidelberg, 1984.
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Probabilistic Neural Network (PNN)

As mentioned, the initial motivator of this contract was to explore neural network

alternatives that could handle potential discontinuities in a control process and still

maintain a distributed representation which could be examined and scarnlessly incorporate

knowledge from many sources (e.g. human control inputs). Because neural networks

using function interpolation were not likely to have such properties, cxarnination of

distributed memory techniques was undertaken. One kind, a feed-forward network called

a Probabilistic Neural Net_ashowed potential for learning from observations to obtain the

MAP value estimation in response to a new system input. Some early studies using the

PNN as a method for landing a simulated Boeing 747-400 proved suggestive but were

later found to scale poorly because the high dimensionality of the problem required an

extremely large number of points to capture landing behaviors under variable wind

conditions. Figure 5 shows how this network is connected. A series of input values fan

• • • • • • Input
Units

Pattem
Units

_igm_ 5 Output

Units

Structure of a Probabilistic Neural Network

Summation
Units

into gaussian difference calculators called pattern units. Each input value is ranked in

terms of its gaussian distance from the set of values centered at each pattern unit. Given m

pattern units related to a particular output category (each having dimension p, values in

vector psi, and an arbitrary input pattern x of dimension p), the output for all pattern units

psi is shown below, where sigma is a term controlling the spread of the gaussian

15. Specht, D., Probabilistic Neural Networks for Classification, Mapping, or Associative Memory," Pro-
ceedings of the IJCNN, July 1988, Vol.l, pp.525-532.

Dimibuted Memory C.tmtrollen Sel:_::mber20, 1990 10
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distribution. A selection is made such that the unit with the greatest response is the winner.

Which output unit is selected depends upon both the sum of gaussians and a proportional

weighting factor based on a ratio of prior probabilities and anticipated loss that is applied

at the output units.

If the process is unknown, priors are frequently assumed to be equal. Loss functions

are neglected simplifying the model. A sample of a PNN network which estimates a

function value y based upon input values x was developed to test the method and is

included in the appendix under the name CJPNNFIN.M. One of the nice features of this

type of network was that it generated a smooth interpolation between near neighborhood

points if a new data point fell somewhere off of the exact center of the multivariate

gaussian distribution. How well the interpolation worked was determined by the value of

sigma, which is found most easily by exl_erimentation although theoretical derivation of
its most effective value has been made. ]`'

Another characteristic of the PNN net that made it attractive initially was that the

degree of interpolation could be varied from a look-up table with very small sigma values

to a sum of gaussians through larger sigma values. Generically, o_er gaussian calculation
units have been studied under the label of radial-basis functions" in which the sigma

values of the functions have been allowed to vary at each point to form interpolators with

nonhomogeneous resolution across the function space.

Some of these nets applied a combination of back propagation learning and radial

basis units to improve their mappings. A major problem with these nets however was how

to determine the minimum number of units. For more complex problems they scale poorly

because generally only a limited part of the possible training space is required to capture

the function. Hence it seemed useful to develop models which are more memory efficient

yet have the desirable interpolation characteristics of PNN or Radial Basis networks.

Sparse Distributed Memory (SDM)

One paradigm which designed for efficient use of memory is the Sparse Distributed
Memory network of Kinerva '°. SDM is a generalized random access memory suited for

long (over 1000 bit) binary strings of data. Words serve as both addresses to and data for

this memory. The key idea is similarity based addressing. That is, when accessed, the

16. Parzen, E. "On the Estimation of a Probability Density Function and Mode,: Ann. Math. StaL, Vol. 33,
September 1962.

17. Poggio,T and Girosi, E "A Theory of Networks for Approximation and Learning," M1T AI Memo No.
1140, CBIP Paper No. 31, July 1989.

18. Kinerva, P. "Sparse Distributed Memory," MIT Press, Cambridge, MA, 1988.

Distributed Memory Controllers September 20, 1990 I 1



memory reads out not only the original write address but the contents of other addresses

within a particular neighborhood (e.g. points wi_in a Hamming distance of the address).

As stated by Flynn, Kanerva, and Bhadkamkart_There arc six concepts that are central to

describing the behavior of an SDM. They are: writing to the memory, reading from the

memory, the address pattern or cue, the data pattern or contents, the memory location or

hard address, and the distance from the hard address.

For the present purposes, the most important characteristic of this memory is the way

in which it deals with very large address requirements. Suppose for example that the robot

control problem was to be learned using a small sigma look-up table PNN network. Each

possible target point in three-dimensional space would have two different camera plane

projections and three possible joint angles. Thus for each point there is a 7-dimensional
address. If the minimum resolution for each coordinate was a coarse .01 with a range from

0 to 1, the number of possible addresses would be 100;'. Clearly, one would never be able

to store enough training samples to completely describe this space.

SDM addresses the large memory problem by storing only a smaller (sparse) number

of addresses in the larger space and upon retrieval from the memory forms an interpolation

of the correct value based on a combination of addresses closest to that of the input

pattern. An advantage of an SDM model is that a user can specify a predetermined number

of physical memory addresses yet have the memory act as though it were representing a

much larger dimensional problem, hence the name sparse distributed memory. As in the

PNN network however, the mechanism to select the best representative addresses to use

for an unknown process remains an active research problem.

In general, the SDM provides a way of looking at distributed memories that is well

suited for hardware implementation and is likely to scale with problems that would be

difficult for a standard PNN to handle. As a result, the first experiments for learning the

control problem involved efforts to incorporate the best features of both Radial Basis

Function Networks and SDM into a unifying structure. I have called such a hybrid a

Radial Basis Sparse Distributed Memory Network or RBSDM.

19. Flynn, M.J., Kanerva, P., and Bhadkamkar, N. "Sparse Distributed Memory Principles of Operation",
RIACS Tech. Report 89.53, December 1989.
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Radial Basis SDM

There aretwo main ideasincorporatedinthe radialbasissparsedistributedmemory.

First, learned patterns are represented by multivariate gaussian distributions with their

centers located at the coordinates of previously stored points. Their shape is determined by

the same sigma parameter defined above in the discussion of the PNN network. New

patterns are compared to each previously stored point and assigned a similarity ranking

based upon their summed gaussian distance from the pattern using all input dimensions.

For the arm positioning problem the input dimensions were the four camera coordinates.

The maximum response for a coordinate was obtained when the input data value exactly

matched a stored point. As the point moved farther away, its value dropped off as a

function of the shape of the distribution determined by sigma.

At this, the RBSDM diverges from a PNN in that it accesses the winning point like a

sparse distributed memory where output values are calculated depending upon what type

of reconstruction rule is chosen for the system. One simple rule is to pick the address with

the maximum value. In this case the network functions as a nearest neighbor classifier

based on a gaussian distance function. Another is to average values closest to the winning

point in which case the network functions as a k-nearest neighbor classifier.

The use of the SDM distinctions in addresses and data, actually leads to a

simplification of the PNN network. This is because the PNN is generally used as a

Bayesian classifier producing MAP probabilities as a by-product of discrete

categorization. A pure implementation requires breaking the output functions into seperate

categories for each sub-range of each variable in the problem. For example if it was

required that three joint angles be estimated for an input pattern of four camera

coordinates, each angle would be treated as one category for each degree of joint

movement. Therefore if the three joints were moved in a range of 90, 180, and 180

degrees, there would be 90x180xlS0 different category "bins" into which the classifier

would associate input patterns. Clearly, the amount of data to get enough samples for each

bin would be overwhelming. So a discrete categorical model would not be feasible.

On the other hand, a pure SDM architecture also traditionally represents addresses in

terms of distinct bits. Its distances are defined using a Hamming metric between bit

patterns (though other metrics have been explored 20) and is usually formulated as a binary

addressing device to facilitate hardware implementation. What it added to the

development of the RBSDM however, was to make very clear a relationship between

addresses for data, the content at the address, and the method used to access that location

i.e. the reconstruction algorithm. If the input values are thought of as point on a continuum

of addresses, then joint angles are merely contents found in that address's cell.

What this means practically is that the output layers of the PNN network are no longer

required to maintain interpolation properties illustrated for that model. Data could also be

20. Jaeckel, L., "An Alternative Design for a Sparse Distributed Memory," RIACS Technical Report 89.28.
(1989).

Dimibuted Memory Contrc_len September 20. 1990 13



stored at address points using an SDM logic, however the RBSDM is different in that the

metric applied to find the nearest address is a multivariate gaussian rather than a

membership based upon a hamming radius within a discrete address space. This

framework permits a method for dealing with continuous data, a graceful way to modify

the address neighborhoods, and opens up the application of the adaptive point sampling

schemes used by radial-basis models for SDM. It highlights a recurring need however, to

modify SDM concepts to gracefully handle analog data.

Figure 6 presents a graphic of the RBSDM. Code implementing the model is included

Input Pattern

Gaussian units

[_D _ _D] Neighborhood orO • • q P • q D |P Maximum finder

(Input Addresses)

OutputData

Figure 6.

Radial Basis Sparse Distributed Memory

in the appendix under the title of SDMPNN.M. The figure illustrates the significant
difference from PNN which is the RBSDM recall procedure. An input pattern is presented

to the network as though it were an address in a higher order space. This address is

compared to other nearby addresses stored at points referenced by previously presented

values. The distance between the addresses of those values and the input point is

calculated as a sum of gaussians (one from each dimension of the input pattern). A

neighborhood rule is applied which picks either the address having the largest sum as the

winner or some neighborhood set of addresses. The output of the net is calculated as a

function of the contents at those addresses. In the case of a nearest neighbor rule, the

output will be a previously stored joint angle set. In the case of a neighborhood, the output

value will be some function of the neighboring joint angles.

The RBSDM recall logic is also somewhat different than that of an SDM in that two

Diltribule_lM_rnoTy ContmIlc_ Sel_ber 20. 1990 14



parameters are used. The first is the value of sigma which controls how specific the

network is in selecting relevant addresses. A second parameter called hrange was added

which controls the limit within which the gaussian influence applies. Hrange is

implemented by using a percentage of the maximum summed gaussian value. That is, its

value reflects what percentage of the closest value a response most show before it is

included in the neighborhood. Figure 7 shows the effects of changes in sigma and hrange.

As can be seen, the effective radius can be tuned by varying the cut-off value for

hrange. If the gaussian is flat, the same hrange value produces a wider radius than if sigma

is peaked. The more sigma approaches a look-up table, the less effect hrange has on the

number of neighbors included. The RBSDM routine includes hrange and sigma in its call

so that the user can directly influence the look-up and neighborhood characteristics of a

given exercise "tuning" the network for optimum response to a given training set.

sigma -.15
hrange = .20

sigma = .05
hrange = .99

Figure 7.

Effects of Changes in Sigma and Hrange

RBSDM Performance

Tablel summarizes the performance of the RBSDM on the benchmark problem. The

exact camera and arm models were used to generate a set of all locations reachable for the

arm and visible for the cameras using the equations derived in the companion to this

Distributed Memory Controllen September 20, 1990 15
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report 21. One thousand points were selected at random from this set (total size 3800) to

serve as potential training patterns hereafter referred to as the "trainset". The remaining

points served as the pool of untrained points used to test the generalization of the network

hereafter referred to as "testset". MATLAB procedures were written to randomly select

varying size subsets of points from trainset to serve as previously learned addresses and

reflect training sample effects for various amounts of training information.

For readers used to learning paradigms such as backpropagation, a comment about

training distributed networks is in order here. Training for backpropagation requires

repeated presentation of patterns during which weights are adjusted according to some

error function. As a result learning is a difficult process. In contrast distributed memory

networks deal with the interpretation of previously seen pattern values. Learning for these

nets equals storage, and attention is on the selection and combination of representative

points. The subtle aspects of the process center on reconstruction mechanisms during

recall, which for backpropagation is predetermined by how the network was trained.

The test data in the table of the RBSDM was generated as follows. Previously

untrained camera coordinates were presented to the network one at a time in random order.

The maximum summed gaussian was calculated using a variety of values for sigma,

hrange,and the number of estimating points. Joint coordinates were given to the arm

model and an x,y,z end effector location was calculated for which the joint angles would

have moved the arm. The positioning error between the network's arm position and the

actual point locations were then calculated and stored as positioning errors. The process

was repeated three to five hundred times for each tested set of parameter values and the

mean positioning error, standard deviation, minimum error, maximum error and median
errors were calculated.

Figure 8 shows plots of the mean positioning error as a function of the number of

estimation points and the value of sigma with hrange held constant at .99.The first plotted

values show the overall error performance of the network as a function of the number of

points used to train. The mean error drops as the number of points is increased until

leveling off at about .0515. Generally recall was better using nearest neighbor

interpolation at recall rather than the gaussians. This was tested by fine-tuning the

RBSDM to its best performance at a given number of points and comparing its mean error

to the result of using only the raw data points and a one nearest neighbor or four nearest

neighbor rule. As the number of points increased, this difference became negligible.

Table 2 and Figure 9. show how sensitive the network was to variations in sigma. As

can be seen, mean error drops as sigma moves from .01 to .13 and gradually increases

again after that value. This graph illustrates two points. First, it is relatively easy to

empirically locate the most effective sigma value. Second, the network is forgiving over a

fairly wide range of sigma values once the standard deviation has been increased to a

degree that permits interpolation. In general, the best mean error and minimum standard

deviation occurred at approximately sigma =. 10, hrange .99 where the minimum mean

21. Jorgensen, C.C. "Development of a Sensor Coordinated Kinematic Model for Neural Network Control-

let Training," RIACS Technical Report 1990, April, 1990.
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error was .0446 and standard deviation at .0339. Minimum error approached zero,

maximum error approached. 1649. Median error was .0334.

This performance can be assessed by comparing it to the average distance betwe.cn

points in the training set .2036 with standard deviation of .2704. Average interpoint

distance in the tcstset was comparable at a mean of.1985 with standard deviation of.2651.

As a check on the possibility that unique sampling effects might have occurred, a reversal

test was performed, training with 1000 points taken from the testset and sampling 300

points from the training set. The results were comparable with mean error equalling .0408

and a lower standard deviation at .0294, minimum values at zero and maximum at. 1591.

Testing the recall of the RBSDM using previously stored points showed negligible error as

expected.

Because the simple neighborhood rules performed so well, manipulation of the recall

process was examined in more detail. One of the first things that was considered was to

take advantage of the input pattern processing architecture to average estimated RBSDM

output values based on their gaussian distance to the input pattern. That is, within a given

neighborhood, the estimate of an output value was calculated based upon a weighted mean

proportional to the gaussian distances from the input patterns. This averaging scheme did

not prove effective.

As seen in Figure 8, a four nearest neighbor recall rule applied to the same addresses

exceeded the performance of the RBSDM until the point size became very dense at which

time little difference was observed. This implied that the RBSDM might do better if the

gaussian dispersion was markedly increased. A test of how well the gaussians would

smooth a very sparse grid with sigma at .2 and .1 and at alternative hrange values .02 and

.5 showed very poor performance. The conclusion was that for limited numbers of data

points, small nearest neighborhood interpolations using a standard euclidean distance

proved superior. As the density of stored points increased, gaussian look-up provided

equivalent and perhaps slightly superior estimates.

Although it had a desirable level of precision once the sigma values had been correctly

determined, other properties of the RBSDM motivated the consideration of alternative

distributed memory methods. Among its strengths were that storage of exemplars meant

that previously encountered patterns would be correctly recalled with very high

probability. However, when new patterns were presented, the net did not necessarily

generalize well because the gaussian front end could not always form a smooth

interpolating surface between previously presented points. This occurred when each point

was given the same radius of influence (the same gaussian shape) hence the interpolations

were more accurate where the training data was dense but suffered from disconnected

"gaps" where the U-fining data was sparse. Where these gaps existed, the net would return

the nearest neighbor from among the set of previously trained points even if that point was

some distance from the test pattern. Without overlaying some kind of averaging scheme

upon recall, the network degrades into a gaussian look up-table.

Another difficulty dealt with a user's ability to control the adequacy of a training data

set. It is generally not possible to specify in advance the correct number of training
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RBSDM Performance As A

Function Of Sigma

.03 .06 .10 .12 .13 .15

Mean .1071 .0561 .0446 .0451 .0460.0429

SD

Max

Min

Med

.1738 .0757 .0339 .0297 .0303 .0291

.9414 .5198 .1649 .1214 .1484 .1628

.0000 .0000 .0000 .0000 .0000 .0000

.0514 .0365 .0334 .0400 .0367 .0367

*hrange ffi .99

Mean

St.Dev.

Max.

Min.

Median

.20 .30 .40 .50 .60

.0398 0424 .0495 .0766 .0582

•0258 .0347 .0371 .0934 .0382

•1113 .1887 .2463 .9057 .1776

•0000 .0000 .0060 .0059 .0000

.0398 .0427 .0400 .0627 .0582

*hrange = .99

Table 2
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samples and select correct sigma values if one were dealing with a changing real world

process. In tbese situations, we would like to have networks adjust addresses for learned

points to cover the space with a predetermined number of locations. This type of

intvrpolation is handled by another network called a sdf-organizing map but is not well

suited for the RBSDM or PNN memory architectures. The implication is that if the

process is stable, RBSDM may provide an effective method for learning the control
structure. On the other hand if the process varies in time, the method is not adaptive

without introducing birth and death processes into the address space.

Storage addresses in a radial basis architecture are fixed by the training data. What

varies are the number of stored points and the radius of the multivariate gaussian centered

around the point. Although the gaussians can be expanded or reduced to interpolate better,

point locations do not migrate over time. If the distribution of the training set does not

closely match the underlying real-world problem, the network will not capture the central

tendency of the set but only a particular instance of it.

If the underlying process is highly stable, this may not be a disadvantage. However, if

the process changes or the sampled training distribution at a given time is

unrepresentative, such an architecture may be inappropriate. A series of studies were

therefore undertaken to examine the feasibility of using self organizing maps as an

alternative storage mechanism for observed patterns. In addition to standard architectures,

new variations were developed some of which proved extremely effective. Each of these

is discussed in the following sections. We begin with a brief review of the key concepts of

a self-organizing map.
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Self Organizing Maps

The idea of a self-organizing map is generally attributed to Tueve Kohonen 22 although

concepts of local neighborhoods and effects on nearest neighbors occur in a number of

vision and pattern recognition techniques 23. The central idea is to capture statistical

characteristics of a training set by having the structure of a connected network reorganize

in response to incoming patterns. The net is constructed in such a way that it has a fixed

interconnection structure hence the shape of the network varies as it attempts to match the

values of the incoming data set by moving current values of locations on the lattice. The

net can perform higher to lower order mappings in cases where the input dimension is

higher than the output dimension. It can also be used for a number of types of problems

including pattern matching, speech recognition, and control.

The simpler versions of the algorithm work as follows. A number of points in the

mapping space (usually coordinates in a 2-D plane) are selected at random. Associated

with each point are other points chosen as neighbors and an output value such as a class

name associated with each point's address. As the algorithm progresses, the locations of

the points are moved toward the coordinate values of randomly presented training

patterns. Formally this relationship is defined by two equations:

wt+ 1 = wt+o_t[i t- w t]

(x = f( t, r)

Where w is the weight vector for a particular unit, i is an input pattern at time t and

alpha is a learning rate term which is a function of time t and a radius of influence r. Alpha

is generally a fairly simple proportional function of time and is controlled by a cooling

schedule which gradually decreases the learning rate so the net eventually achieves

stability. Similarly, convergence to a stable neighborhood size can be controlled by

starting with radius which shrinks over time until a point is not perturbed by movements

of its neighbors or using a fixed neighborhood and no variation in radius over time. The

lack of a time varying radius results in a computation trade-off since many more trials may

be required before the network reorganizes to a sufficient degree to capture the regularities

in the training samples.

Within this deceptively simple framework, a large number of variations are possible

which can result in marked differences in behavior. For example, if the radius is too large

while the learning rate drops too fast, a nonoptimal map is generated that is overly

influence by irrelevant patterns. On the other hand, if too small a radius is used and a slow

learning rate scheduled, the net may not reorganize enough to minimize the global

22. Kohonen, T. "Self Organized Formation of Topologically Correct Feature Maps," Biological Cybernet-

ics 44, 135-140, 1982.

23. Duda, R. O., and Hart, P. E.," Pattern Classification and Scene Analysis", John Wiley & Sons, 1973.
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neighborhood constraints in the data. Research for this type of net usually focuses on

finding particular schedules for alpha, and the nature of the neighborhood connections.

In the sections that follow, the tests of a SOM method for distributed control followed

this procedure. After deriving a specific variation based on its theoretical or computational

properties, a network was designed and implemented in MATLAB. The network was first

tested for performance on a two-dimensional point set problem composed of a regular

grid. If the network was able to capture the grid point ordering with 100 points, a full scale

OOOOO00OOO0

OO000OOOOO0

OOOOOOOOOO0

O000OOOOOO0

OOOOOOOOOOO

Figure 10.
2-D Grid Used To Test Models

version was coded for learning the 4-input 3-output, 7-dimensional problem produced by

the arm problem. A number of variations of parameters were then tested. After learning,

the network would be subjected random points corresponding to untrained but reachable

arm positions. Typically each run would sample between 300 and a 1000 random points

and plot the performance including values for mean error, standard deviation, minimum

error for the set, maximum error for the set and median as was done for the RBSDM. At

the end of the tests, comparative analysis were performed to select the best designs. These
were later used as kernel architectures within which alternative learning rules were

developed. Finally, comparisons were made between the SOM methods, the RBSDM, and

traditional pattern recognition techniques (nearest neighbor and k-nearest neighbor

classifiers). Source code for the most useful variations is included in the appendix to this

report.

Quite a number of specialized networks were developed during the course of this

research, some of which are sufficiently different that they might reasonably be classified

as new types (e.g. the infolding net). These nets included higher dimensional self-

organizing maps (3-D SOMs), new mapping procedures which studied the capture of

higher order space by adjusting weights based upon a lower dimensional subset of that

space, variations in learning rules (cooling schedules, coupled learning equations, and a

new proportional winner rule), and variations in architectures (internal interactions within

fixed neighborhoods, ranked nearest neighbor sets, stochastic neighborhoods, learning rate

adjustments based on studies within the sparse distributed memory project (e.g.

Danforth's polarity rule 24), and generalization as a function of coarseness in
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approximation. Each of these variations will now be described.

Initial Studies

The first studies used two-dimensional SOM maps and the regular pattern grid to test

performance. This was done for two reasons. First, most self-organizing maps in the

literature have based their performance figures on 2-D planar problems. Second, the test

data set could be given a regular form which simplified visual evaluation of the network as

it learned. If the net was performing correctly, the points would start out as a tight, random

cluster (although for some types of maps they are not required to do so) and gradually

"unfold" until point locations matched that of the training set. A schematic of the

evolution of such a net is shown below:

Tightly Clustered

Starting Condition

Pulling Apart

100 Learning Trials

Ordering with Clumps

1000 Learning Trials

ili l i

i/'    'iiiii!!iiiiii,!iiii,!      iii!iiii!!!i !i!i!ii!i!!i!!

Fully Ordered

15,000 Learning Trials

Figure II.

Typical Evolution of a SOM Net During Training

What normally happens is that the points gradually pull away from the center cluster

and begin to order themselves according to the neighborhood constraints and

characteristics of the training data. This process continues until the point set topology

approaches that of the generating function. Since the underlying distribution of the

training points for this problem was random samples of a regular 2-D grid and had the
same dimension as the SOM, the network conformed exactly to the generating function. If

24. Danforth, D.G. "An Emphical Investigation of Sparse Distributed Memory Using Discrete Speech Rec-

ognition" RIACS Technical Report 90.18, March 1990.
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the training dam had a higher dimension, for example 3-D, a 2-D net would attempt to

twist into a representation of the projection of that space.

Because theprojectionof thenetwork fora higherdimensional space could appear

chaoticinlower dimensions,therearecertainadvantages inhaving thedimension of the

SOM be matched to the underlying spatialdimensions of the problem. That iswhy a 3-D

SOM was selectedforthe benchmark. By looking atthe xy,xz,and yz projectionsof the

map itbecame possibleto determine whether the network was capturingthe underlying

movement constraintsgiven to theroboticarm. For example sincethe arm was locatedin

a cornerand could only move 90 degrees in thexy plane (aquartercircleof reachable

points),plottingthatprojectionduring learningshowed whether the net was re,organizing

tothe correctspatialrelationshipsforthearm. Figure 12 shows theprojectionof the entire

setof reachable arm pointson the xy,xz, and yz planes.Figure 13 shows a learned

projectionfound by the bestof thetestednetworks (theinfoldingnetwork discussedlater)

given only a smallersetof random trainingsamples.As can bc seen,the network has

captured the underlying structureof thereachablearm pointsvery well indeed.

Such a visual, although useful to screen reasonable networks from poor ones, is not

sufficiently precise for formal conclusions to bc drawn. Consequently, after learning was

completed, the nets were subjected to repeated performance tests through the presentation

of randomly selected, previously untrained camera coordinates. The exact arm positions

derived from the kinematic equations were compared to the positions reached by the

simulated arm when given the joint coordinates output by the network. Because new

points tested generalization and not look-up, the best performing of the network types

were given evaluations for new and previously trained points.

Both the SOM variationsand the RBSDM model l_rmit differentstrategiesfor

retrievinga controllerestimate.The most straight-forwardand the most e_ficientinthis

seriesof studieswas nearestneighbor look-up.A simple modificationpermittedk nearest

neighbor averaging and was used when therewas reason to believethatinterpolation

performance might bc superior.For the most partthismodificationdid not provide a

significantimprovement when therewas a very largenumber of representationalpoints,

although evidence forimprovement did occur when the number of estimatingpointswas

reduced tolessthan I0 per cent of the 1000 pointsused as the largestnumber of points.

Contracting SOM

In this model weight learning was modified so that

w,+1 = w,+cx (i t- w,)

where w is a weight vector, alpha is a proportion between zero and one, and psi a

factor effecting the maximum amount of change permitted per trial. Also required Gas a

value for r less than or equal to .5 times the maximum range of values along the x,y, and z

dimensions. In practice, r was found to work reasonably well at a value somewhere around

three times the expected interpoint distance in the problem space. Since this would not
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normally be known a priori, repeated adjustments on the rates of learning decrement,

number of learning trials and the ratios between alpha and r values were usually required

for each data set. The code implementing this model for the 2-D grid learning problem is

presented in Appendix1 as SOM2DDEMO.M and SOM2DCODE.M. In this listing and

the ones that follow it, there are usually two MATLAB M files. The fast codes a user

interface for changing training sets, selecting critical parameters, and choosing the number

of learning trials. The second without the prefix 'test' or 't' includes the kernel of the

calculations.

Initially it was speculated that psi should be defined so as to facilitate clustering of

neighbors around active data points to lead to better generalization with untrained points.

Thus points within the neighborhood radius were moved using a factor that minimized the

migration of points already close m the input and maximized change for legitimate

neighborhood points that were farther away. This strategy led to the tide of a

"Contracting" SOM.The learning proportion was to increase to a maximum adjustment of

one hundred percent of the learning rate for distant neighbors and zero for close points.

The logic was that although we might not know the correct starting locations for points in

an unknown space we could sweep the space clear in areas where there were no active

addresses and thus contract to a limited number of highly useful points. A learning rule

which implements this logic is:

V= !1-( min[i-w]['-7-w] ))

where psi is the learning proportion, i an input training vector, and w a stored pattern

vector. The graph below shows how this contraction rule worked for sets of 100 to 400

points. Unfortunately, the effect of the rule was to produce a 'dark star', pulling neighbors

50 m--

40_--

30--

20--

10m

44 43

2_0 3d0 4_

Figure 14.

Percentage of Points Absorbed by Attracting Adjustment Rule

into the same attractors, stacking too many of the points on top of each other. The network

did begin to capture the grid structure but was wasteful of points and calculation time.

Because of extreme sensitivity to the balance between alpha and the radius values, the

network had to be hand-tuned for the correct learning and radius shrinking schedules. It
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was deemed unacceptable for applying to unknown learning environments.

It is interesting that depending upon learning schedules and their relation to the rates
of radius contraction, the network could be made to behave as an atwactor or repulsar, sort

of a neural network version a dark star or an exploding universe. The latter would occur
when points were pulled so hard they moved past the training point, took on negative

values and began to push rather than pull in response to a neighborhood change.

After a number of experiments, it became clear that two problems needed to be
resolved for the self-organizing map to become an effective control tool. First, the

neighborhood relations would have to be balanced against the radius in some systematic
and ideally, autonomous fashion. Second, the proportional learning rule favoring remote

neighbors would have to be modified. A number of variations were explored including

learning schedules that created maximum initial point spreading by keeping the learning
radius large, then rapidly reduced the neighborhood radius while slowly decreasing the

learning proportion. Other experiments looked at pulling all points only as much as the

nearest neighbor, thus adjusting neighborhoods in homogeneous clusters. Different mixes

of within-neighborhood relationships were explored such as attracting centers and

repelling neighbors (the latter based on ideas drawn from the Mexican hat distribution
useful for lateral inhibition networks in the retina). On the whole, none of these
modifications were effective, and some, such as the lateral inhibition concept showed the

expanding universe behavior which plagued the contracting nets. Thus it was decided to

try a different tact. The first effort in this regard attempted to automate the balance
between learning rates and radius through coupled differential equations.

Coupled Differential SOM

Some recent research on SOM nets has attempted to automate trade-offs between
radius of influence and learning rates 25. I explored these methods, but they were found to

be unsatisfactory for the robotic control problem. Basically, the approach was to connect
radius and learning rates through coupled differential equations such that ff dt were the

minimum distance between an input vector and all of its connecting neighbors, gamma the
current minimum distance divided by the starting distance, and sigma the current radius

divided by the starting radius, then the set of coupled equations was defined as:

dR(t)_dt (-°'r)O-(1-a)0-1/° (0-(1-1') -°2°-°21

d(z ( t) _ o2 x
dt

-1

e..Oe_ tanh [1 + ay]

25. Hodges, R. And Wu, Chwan-Hwa, "A Method to Establish An Autonomous Self-Organizing Feature
Map," Proceedings of the LICNN-90, Washington D.C., Jan15-19,1990.
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These equations were merged into the SOM written for the 2-1:) uniform grid and

tested with varying initial rates of alpha and radius. The effect these equations had on

alpha is shown in Figure 15. Alpha starts near zero and increases rapidly in an oscillating

manner so as to "shake" the network's connection weights and in theory, produce a more

uniform distribution of the weights within a certain neighborhood. Alpha increases until a

balance point is achieved which is a function of the current value of alpha, the radius and

the current closest neighbor. Once it has reached a maximum, it began to decay in a near

exponential manner. Thus, in theory, leading to a rapid and balanced learning behavior.

This technique proved far too sensitive regarding the selection of parameters.

Although it did produce a rapid decrease in the learning parameter alpha, it failed to

provide an adequately stable map to capture the relationships necessary to learn the

robotic problem. In addition to its complexity and difficulty in set- up, the technique had a

high overhead in computational time.

Attempts to balance the rate of learning reduction through adjustments to the equation

parameters proved extremely difficult and the method was finally abandoned as requiring

too much fine tuning for the performance level obtained. Simpler designs using more

learning trials and slower learning rates proved for the most part to be much easier to

implement, require less computational load, and were more predictable. Code for a

network implementing the coupled differential learning rule is found in the appendix

under the titles of"TESTSOMRATES" and "SOFMRATES".

Becoming suspiciousof the practicalusefulnessof a separatelearningrateand radius

approach, a new simplerrulewas developed toreplacealpha,rand psiwith a single

proportionaltenn.The coupled equationsdid illustrate,however, thatcomplex

relationshipsmay existbetween neighborhoods, theproblem space,and theparticulardata

setused. Thus one importantnccd was the development of a method for meeting the

neighborhood requirements,while stillpreservingapplicationadvantages which a SOM

theoreticallyprovides.Most importantamong thesewas thepotentialfora more uniform

interpolationto new datapointswhile stillmaintainingcontrolover coarsenessof the

learninggrid(i.e.inthiscase the number of pointsinthe SOM net thatwere selected

initiallytoIcam the trainingset).The SOM isalsocapablein theoryof adaptive learning

and hence a controlsystem using such an architecturecould modify itselfover long

periodsof time and changing datadistributionswithoutfullydiscardingthe desirable

fcaturcsof a distributedmemory representationapproach thatled tothe currentresearch

effort,namcly resistanceto sudden transitionsinlocalbehavior.
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Proportional Winner Rule

After a number of experiments to find an alternative to coupled radius and learning

rates, a simple, effective rule was found which I have called the proportional winner rule.

It is defined as follows:

That is, a weight xi on trial t + 1 is adjusted based on its current value plus a proportion of

that weight using differences between input, the closest weight at time t,and weight xi.

The proportion is a ratio of distance between the input pattern and the closest weight in the

neighborhood (w sub c) divided by the distance of weight xi from the input. W subscript r

is the set of points within radius r of input i at time t ,c is the index of the nearest member

of the neighborhood, and xi is the neighbor index.

The structure of this rule is interesting in that there is no longer an externally

scheduled learning rate or radius. The winning point is moved directly to the coordinates

of the input meaning that for at least the next trial, the network will function as a look up

table for that point. This occurs because the minimum point distance divided by the

current point distance is one if they are the same and proportional otherwise. The farther

away a point is from the winner, the less it is effected, so the neighborhood influence on

distant points is negligible. If a point already exists at the location, the distance is zero and

no change in the network takes place. A nice property of the rule is that if no points are

close, network points are effected to a greater degree. Thus the rule provides a powerful

adaptive behavior but is extremely simple to implement. The ability to dispense with

alpha, r, and learning proportions greatly simplifies the net and yet the power of the

organizational properties remain intact.

Initial tests using the rule dramatically outperformed the approaches using automatic

radius and cooling schedules. Table 3 and Figures 16a and 16b summarize the

performance of a 3-D SOM using this rule on the robotic problem. Plots are presented for

network sizes of 125, 343,729, and 1000 points. Nearest neighborhood sizes at recall

were varied from 1 to 20. The network was trained using a learning neighborhood of four

points. It should be kept in mind during the remainder of the paper that there are two kinds

of neighborhoods discussed. The first is the neighborhood used to organize the points

during learning of the underlying distribution. The second is the number of points used to
estimate a new value when the network is accessed during recall. They do not have to be

the same size. Generally, a small learning neighborhood (about four) worked most

efficiently. Unless otherwise noted, the plotted results using this size neighborhood during

learning. The graphs reflect recall generalization for new points. Consequently, the

neighborhoods shown on the plots are the size of the recall neighborhood used on a

learned net of a set size. Overall, the plots show the best recall performance occurred

using a local neighborhood of about four points. Both mean error and standard deviation
were lowest. Other tests not shown indicated this result held constant even if the learning

neighborhood was smaller or larger.As would be expected, generalization performance
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Regular S0M Using Four Neighbors,

And Proportional Winner Rule

Modified By Index Of Neighborhood

Mean

St.Dev.

Max.

Min.

Median

(125 Points)

I 3 4 6 20

.1109 .0992 .1061 .I049 .1449

.0619 .0572 .0631 .0592 .0810

.2994 .3019 .3027 .3067 .4374

.0040 .0077.0140 .0101 .0138

•1005 .0873 .0922 .0935 .1301

Mean

St.Dev.

Max.

Min.

Median

(343 Points)

1 3 4 6 20

.0816 .0724 .0703 .0743 .0849

.0508 .0415 .0438 .0442 ,0504

.2431 .2116 .2042 .2037 .2771

.0061 .0060 .0011 .0025 .0113

.0707 .0685 .0589 .0713 .0716

Mean

St.Dev.

Max.

Min.

Median

(729 Points)

1 3 4 6 20

.0697 .0587 .0667 .0655 .0722

.0515 .0396 .0497 .0496 .0475

.2604 .2521 .2568 .2523 .2428

.0040 .0024 .0046 .0012 .003i

.0560 .0513 .0533 .0516 .0596

(i000 Points)

1 3 4 6 20 30

Mean .0616 .0576 .0609 .0599 .0592 .0656

SD

Max

Min

Med

•0442 .0416 .0427 .0425 .0359 .0416

.2604 .2450 .2740 .2519 .2249 .2349

•0057 .0017 .0033 .0046 .0024 .0049

.0490 .0473 .0609 .0495 .0510 .0543

Table 3
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increasedas the number of pointsincreased.The importantpoint,however, isthat

performance forsmallernumber of pointswas betterthan thatof theRBSDM.

One of the interesting aspects of this test was the metric chosen to define network

neighbor proximity. Because there were four input dimensions (the planar camera

coordinates) and three output dimensions (the robot arm joint angles required to reach the

point represented by the planar coordinates) it is possible to use a seven-dimensional

distance measure to determine how to adjust the weights relative to an x,y,z point.

However, one of the potentials in using SOM maps was the possibility of having multiple

controller networks learn autonomously and still connect smoothly to each other. Ideally,

we would like to have one network control the relationship between points in the three-

dimensional space and the sensor models. We would like another net to adaptively learn

the inverse kinematic relationship between a point in space and the robot joint coordinate

required to reach that point. This is because both processes might change with time at

different rates (wear on the robot arm or distortion on lenses or sensing systems). If we

required that all dimensions were used to order the net, all component networks would

have to be updated sychronously. If on the other hand nets were mutually referenced to the

same physical points in space (sort of a neural network version of a blackboard

architecture), they could learn to interact with each other. Thus one question of

considerable interest was whether or not the network could learn effectively using only a

subset of the possible dimensions, namely 3-D point coordinates.

For example all seven dimensions could be used to determine the distance metric or

only a subset. In the present case only three of the 10 possible points were used, i.e. the

xyz coordinates. Even though this meant that learning was determined by a lower

dimensional projection of a higher order space, the generalization performance was very

good, hence the model was capturing the problem space. It is interesting to note that this

reduced dimensionality potentially permits learning for high degree of freedom robot

systems, since it appears that map orderings established on metrics defined on only three

dimensions were able to correctly order the values for the remaining dimensions

associated with the camera and joints To understand how this would work in practical

applications it is helpful to consider the sequence of steps required to generate a real-

world training pattern.

A set of random joint angles is fed to the robot arm. As a result of those angles the tip

of the arm moves to a location. The location is measured in terms of xyz coordinates.

These coordinates are observed by the cameras which in turn produce four projection

coordinates on their image planes. Ten values, the xzy positions, four camera coordinates

and three joint angles then become a single member of the training set. The process is

repeated for however many points are desired. The neural controllers are presented with

these patterns and required to adjust their initial random values according to whatever

learning rule is being used. In the present case it is the proportional winner rule.

Table 4 and Figuresl7a and b illustrates the performance of what happened with

alternative SOM network architecture, specifically a network with a fixed 27 point

neighborhood when using the proportional winner rule. Figure 18 shows a point projection

of the learned network how the xy projection varied as a function of the number of data
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SOM WITH 27 NEIGHBORS

Performance As A Function of

Neighborhood Size and Number of Points

Mean

St.Dev.

Max.

Min.

Median

(125 Points)

1 3 4 6 20

.0932 .0974 .0909 .1082 .1254

.0537 .0562 .0532 .0641 .0671

.2756 .2946 .3182 .2912 .4274

.0067 .0059 .0082 .0085 .0124

.0820 .0889 .0804 .0983 .1167

Mean

St.Dev.

Max.

Min.

Median

(729 Points)

1 3 4 6 20

.0418 .0459 .0471 .0488 .0586

.0324 .0296 .0334 .0322 .0354

.2028 .1566 .2057 .1830 .1765

.0000 .0018 .0025 .0070 .0084

.0343 .0386 .0413 .0413 .0049

Mean

St.Dev.

Max.

Min.

Median

(343 Points)

1 3 4 6 20

.0646 .0618 .0626 .0692 .0915

.0401 .0360 .0362 .0388 .0472

.2177 .1997 .1932 .1940 .2942

•0000 .0032 .0074 .0072 .0124

.0582 .0567 .0527 .0647 .0861

Mean

St.Dev.

Max.

Min.

Median

(I000 Points)

1 3 4 6 20

.0452 .0497 .0506 .0551 .0628

.0364 .0340 .0367 .0389 .0402

.1984 .1638 .2380 .2061 .2379

.0000 .0031 .0037 .0027 .0043

.0358 .0417 .0404 .0468 .0560

Table 4
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points. As can be seen, the spread of points was much smoother than the underlying data
distribution. After many more training trials than the previous net, generalization

performance proved slightly better.

Prior to using such "hard wired" neighborhoods for the full-scale problem, the

proportional winner rule was tested on the 2-D problem using two different fixed

neighborhood architectures. The first neighborhood was wired to represent up, down, left,
and right relationships i.e. a symmetric four member structure. Similarly, a second

neighborhood added upper left, upper right, lower left, and lower right cells to produce an
eight neighbor mesh. Once given a point set of arbitrary size, neighbor values were

assigned at random but then were bound to those neighbors during the remainder of the

learning process. Figure 19 shows the 2-D neighborhoods used. As a result of these tests,
it was determined that the most densely connected neighborhood (8 neighbors) provided

greater ordering stability for the 2-D mesh problem. Consequentiality a 27 neighbor mesh
was consmacted when the network was tested for the 3-D problem. The 27 neighbor model

is found in the appendix in routinesTCISOM3.M AND CJSOM3.M.

® @

Four Neighbor Eight Neighbor

Figure 19.

Two Alternative Fixed Neighborhoods for the 2-D Problem

In the first case of radius-based neighborhoods, coding was simplified because a

neighborhood was merely the n closest points. The computer overhead was also lower
because a rank ordering of point distances was already being calculated during the finding

of the nearest neighbor for the proportional winner rule. In most practical systems this

number would generally be kept low, since most calculations for distant points would
involve such small movement that distant point computations would be virtually wasted.
The main effect of large learning neighborhoods was a more rapid spreading out of the

points over the map. Once this spreading had occurred, significant adjustments became

increasingly local in flavor until one point in the neighborhood either matched the

incoming address exactly or was so close as to be unimportant.

Mean, standard deviation, minimum error, maximum error and median for the 27-

neighbor net are presented in tabular form in Table 4. As a basis of comparison,

performance for a nearest neighbor recall rule using the exact training set is also given.
(Note: this information would never normally be available to the SOM so this is an
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extremely tough comparison standard. What these graphs and tables show is that a SOM

network with the proportional winner rule and fixed neighborhood is capable of

effectively learning the control problem and generalizing to new points in the space. The

results indicate that the fixed neighborhood out-performed nearest radius learning

neighborhoods for interpolation to new points for medium to large point sets. This is a
valuable result since it indicates that there was a performance advantage associated with

the use of the network that surpassed what a look-up table based on the training set alone

would have accomplished.

A conjecture is that this result occurred because a fixed neighborhood topology

ultimately permitted a more regular distribution of the global elastic energy i.e. the fixed

neighborhood regularities came closer to generating a global optimum solution for the

problem due to propagation of errors over may learning trials. This in turn dropped the

mean statistics during the sample tests. A future research direction would bc to examine

machine-efficient mechanisms for the generation of higher dimensional neighborhoods.

Although the 27 neighbor network was effective for this problem because of the

underlying 3-D dimensional task, it may become impractical if the problem is scaled up.

Consequently, the nearest radius neighborhood model tested first should not bc dismissed

as viable candidate cvcn though it did not appear to perform as well in this specific case as

a fixed neighborhood. The advantage appeared to remain across numbers of network

points ranging from 125 to 1000.

Although effective,thelargeneighborhood sizeand bookkeeping of thefixed

connected network could bca realdisadvantageforreal-timeperformance. Consequently,

the next seriesof experiments explOred a method forimproving thefirstnearest

neighborhood approach calledtheinfoldingnetwork. This network was designed to

maintain a scalableneighborhood structureand atthesame time improve theperformance

of nearestneighborhood model forrecallof previouslyexperiencedpatterns,i.e.

overcome thedisadvantagethatthe SOM networks have relativetothe look-up properties

of the RBSDM.

Infolding Network

Although learningusing a proportionalwinner ruleand variableneighborhood was

much more autonomous thanlearningwith a standardSOM, certaincharacteristicsof

variableneighborhoods wcrc unappealing.These were associatedwith ineffectiveuse of

the number of allocateddatapoints.For example, ifmany pointswcrc initializedina

small clusterand allowed to expand (asisrequiredwith a hard-wired neighborhood) a

number of the pointswould bc leftinthecenterlargelyunused This effectoccurred

because aftcran initialamount of spreadingout,the requirednumber of pointsfora

nearestneighborhood were availablewithout takingsome pointsfrom the centercluster.

After thatstage,learningreorganizedratherthandismbuted theremaining points.The

problem did not occur with a fixedneighborhood because thepointsarc fully

interconnectedacrosstheentiregridso thateventuallyelasticenergy minimization pulls

allpointsapart;however, thefixedneighborhoods wcrc much, much slower to train.
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INFOLDING NETWORK

Mean

St.Dev.

Max.

Min.

Median

(125 Points)

i 3 4 6 20

.0885 .0839 .0767 .0800 .1232

.0547 .0536 .0447 .0492 .0666

.2695 .2734 .2164 .2384 .3924

.0061 .0000 .0071 .0077 .0204

.0815 .0719 .0693 .0716 .1054

Mean

SLDev.

Max.

Min.

Median

(729 Points)

I 3 4 6 20

.0644 .0466 .0511 .0555 .0588

.0479 .0327 .0382 .0402 .0401

.2673 .1895 .2237 .1998 .1940

•0061 .0000 .0000 .0042 .0032

.0495 .0400 .0404 .0450 .0484

Mean

St.Dev.

Max.

Min.

Median

(343 Points)

1 3 4 6 20

.0798 .0614 .0603 .0616 .1232

.0540 .0403.0378 .0379 .0462

.2604 .2515 .2536 .1930 .2391

.0061 .0027 .0000 .0038 .0071

.0600 .0528 .0520 .0523 .0701

Mean

StDev.

Max.

Min.

Median

(i000 Points)

1 3 4 6 20

.0549 .0530 .0485 .0549 .0546

.0329 .0381 .0349 .0419 .0344

.2097 .1893 .1890 .2079 .1648

•0061 .0000 .0000 .0000 .0025

.0502 .0426 .0384 .0451 .0438

Table 5
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On the otherhand, iftheneighborsare not fixedand the startingpointsspread

uniformly over allpossiblelocationsinspace duringinitiallearning(ascould be done

with theranked nearestneighbor variationbut not the fixedneighbor network), some

pointswere always outsidethe range of legalvaluesand were never adjustedatall.What

was needed then was a network which when startedwith random Points"swept" the

multidimensionaladdress space cleaninunused areasand focussed learningon addresses

in which the trainingprocesswas active,the same goalthatoriginallymotived the

compacting network.

One approach to this problem was what I will refer to as an Infolding Network. The

logic behind the network is to use the proportional winner rule for point location

adjustments and combine it with an additional process for the migration of unused points

in the address space. The initial approach was to select points "farthest away" from the

winning Point and place them in the locations to which local neighbors would have been

moved after the adjustment rule was applied. The actual nearest neighbors then remain in

the same location but the density of the map is increased due to the import of more local

point coordinates. When repeated, the effect of this operation was to fold the network in

on itself in such a way that extreme values were constantly being removed and translated

to locations reflecting local activity in the network.

Application resulted in somewhat mixed results. The majority of outlying points were

indeed quickly swept out of the space and the density of points in the learning areas was

increased. Unfortunately, valid but extreme data points which were not as dense tended to

disappear and the map rounded and smoothed. In cases with many neighbors, the effect

was to contract the net into a hypersphere.

The solution to this problem was to infold stochastically. Instead of taking only the

extreme points, a Point would be selected at random from all addresses in the net. The

result of this process was a very rapid self organizing structure. Characteristic of this

model was learning approximately two orders of magnitude faster than the connected

neighborhood using the proportional winner rule. Table 5 and Figures 20 a and b, show the

performance statistics for this net. Mean error of generalization for a 1000-point net was

.0485 with standard deviation of .0349 using a recall neighborhood of four. This

performance was superior to the best performance of RBSDM in both mean and standard

deviation and was better that the four nearest neighbor performance test using the exact

training data. It even exceeded the performance of the best fixed neighborhood network.

Not only was recall superior, training time was almost two orders of magnitude faster! Of

the approaches tested, the infolding net appeared to have the greatest potential for

practical application. The use of only local neighborhoods implies that the network can be

implemented in analog hardware much as Grossberg's Adaptive Resonance Models. The

proportional win rule minimizes the need for external intervention and tuning in the

learning process. The SOM architecture permits easy adjustment in the degree of

resolution simply by changing the number of estimating points. The similarity to

traditional SOM models implies that the method could be utilized for the same general

problems. In summary the network exhibited the following desirable characteristics:

1. It rapidly learned a training set and readjusted automatically if the set changed in
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time.

2. It was able to deal with arbitrary resolutions defined by the number of estimation

points and to interpolate smoothley over the training surface.

3. It did not require fine tuning of alpha, radius, and apriori knowledge of the process.

4. It avoided the need to compute fixed neighborhoods which was of particular

advantage if the number of dimensions increased.

5. It did not require a euclidean distance metric such as that used in these experiments.

6. Learning occurred an order of one to two magnitudes faster than without the

infolding behavior. This was largely due to a rapid removal of inactive addresses.

7. It addresses the stability plasticity-dilemma by the random replacement of

previously learned addresses with new information. The degree of plasticity of the
memory automatically increases when more learning is required and slows or freezes if
previously learned points are presented.

8. Further, the stochastic replacement behavior implements a form of birth and death

process. Unused addresses are gradually swept away by the relocation of points. The
moved points function much like new regional connections because the next time the

same area is accessed, a more compact neighborhood becomes available. The dark star

behavior is avoided because training points from other areas of the map constantly
reallocate to conform to the current distribution of the learning set. If the training process

degenerates into the same point for thousands of trials, the net would not collapse into an
attractor because the coefficient of the proportional win rule would go to zero and stop
further evolution of the net.

The point about birth and death processes requires additional comment. By way of
review, the plasticity-stability dilemma refers to the need of a real-time process to be able
to learn and recall from a memory simultaneously. That is, the process can not stop and go

through an extended learning process after each new data point enters the system. Because
the network above stores the latest point due to the proportional winner rule, recent
information is available for look-up. Unless it is refreshed, older information is removed
and the addresses are used to fill in areas of greater activity. The difference in the learning

rate (very fast) versus the forgetting rate (slow if the number of points is large) permits
handling this problem in an elegant fashion.
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Discussion

Comparisons of the generalizabilityof the trainingdata tothe testsetshow thatthe

bestlevelof learningperformance occurred with the infoldingnetwork, exceeding thatof

the RBSDM fornew patterns.A summary comparing theperformance between the

infoldingnet,the fixedneighborhood SOM and theRBSDM isgiven inFigure 21.The

infoldingnetwork willnot equal theperformance of RBSDM forpreviouslyencountered

patternsunlessthe neighborhood issettoone.This isbecause the RBSDM functionsas a

look-up tableand has not physicallymigrated the locationsof thetrainingpoint

coordinatesduringlearning.Ifthe taskhad only a small number of potentialstatesand a

non time-varyingprocessmodel, theRBSDM could be a betterchoice.Ifon the othcr

hand, itisnot known a priorithatthe functionbeing modeled issmoothly continuous,or

theprocess changes with time and requiresreadjustment,the InfoldingNetwork appears

the most desirablechoice

Regarding the most effective method for capturing the underlying characteristics of

the generating function, the infolding network appeared the most efficient of the methods

tested in that if the neighborhood of influence was set to one and the number of points in

the memory equalled the number of points in the training set, the network would capture

the exact structure of the training set. If however, the neighborhood of influence was

increased and/or the number of points decreased, the network moved point locations in

such a way as to estimate an average point location of the set. If the number of

approximating points was small and the radius of influence small, the network would track

the triM-to-trial variations in the training set samples i.e. it became a time-varying network

structure.

A second concern was the best way to use the captured information when estimating a

new point. In this study, a four-neighbor variation on a k-nearest neighbor rule showed the

best recall performance evidenced by the dip in mean error between 3 and 5 on the

majority of the network plots. The dip was similar for data point ranges from 125 to 1000

and was minored by corresponding improvements in the standard deviations for all but

very large numbers of points. As was mentioned in the discussion of the RBSDM,

alternative recall strategies were tried without significantly improving performance. One

was to form the estimated camera and joint coordinates based upon an average of the

weighted gaussian distances from the input value. This weighted average did not perform

as well as a simple four nearest neighbor average. From the standpoint of machine

implementation, the fact that the simplest algorithm appeared to have the best

performance is desirable. The simplicity of calculation combined with a small local

neighborhood bodes well for the scalability of the algorithm.

During this research, observations were made which have implications for further

study. One of these concerned the effects of varying the size of the neighborhood when

using the proportional winner rule. For example, if the neighborhood was over ten percent

of the total number of points, a behavior analogous to a skeletonized image processing

was observed. The large neighborhood resulted in disconnected clusters which moved to

points that had the greatest frequency in the training sample. Within the cluster, points
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remained tightly grouped providing a coarse outline of the underlying distribution. There

appeared to be a similarity between such clusters and moments of the generating training

distribution. Given the ability of the infolding net to track time-changing distributions, the

simultaneous use of multiple networks using different neighborhood sizes might permit

improved approximations to a generating distribution. The maps might also capture

different time scales because a given random replacement rule would have more of an

impact for small point sets (coarse grain) than large sets (fine grain). The implication for

further study is that temporal patterns might be coded through the use of multiple or time

windowed copies of the networks. Most current research on SOM maps and distributed

memories has focused on finding a single optimal neighborhood and recall rule without

considering the possible utility of parallel multiresolution self-organizing map structures

for temporal pattern matching.

However, the clearest future direction lies in increasing the complexity of the problem

to a higher degree of freedom manipulator. The benchmark was constructed in such a way

that a natural path has been provided for more sophisticated tests, namely through the

addition of arm and joint segments, force and computed torques, and enhanced camera or

sensor models. Given that the infolding network appeared most successful on the current

problem, the next logical test would be the substitution of actual arm hardware. Systems

capable of this type of testing are available at both Ames and Langley research centers. An

interesting enhancement would be to couple the distributed memory logic of the enfolding

network to enhanced computing architectures specifically, photonic or massively parallel

processes.

A final comment concerns the incorporation of human control functions using the

models developed during this study. Because the SOM variations in the present paper have

maintained many of the distributional characteristics of the RBSDM, it is possible to

analyze individual point addresses and reconstruct specific behaviors for given state

conditions (i.e. input addresses). However, because the network will also average

information and adjust the point locations depending upon the influences of the entire

training set, a clear separation of formally generated control information and that

produced by a supplementing human controller would be lost. The gain would be a

smoothly integrated network combining both sources of information but with a higher

variance than a formal model alone. If what is desired is a look-up table behavior for

precisely defined control responses and an interpolating table for human or supplementary

learned modifications, the RBSDM framework may be the most effective for this specific

goal because sudden changes in state behavior are not subject to interpolation. It's

disadvantage is a much less flexible capability for handling reduced numbers of data

points, inability to track time-changing phenomena, and poorer generalization for smaller

points sets. Such sets may well occur do to limited availability of samples.
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Appendix

MATLAB Source Code For Neural Controllers Discussed In Paper
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function [outval, numcat] - pnn(ncats,maxy,inpat,numpat,Examples,nsamples,sigma)

%

% Matlab routine to calculate a probabalistic neural network

% category number and value in response to an input vector called inpat

% ncats is the number of categories into which output has been divided

% maxy is the largest value in the output value set i.e. (y(x))

% Previous observations are stored in a matrix called Examples

% numpat is the number of input variables or dimensions

% and is the same as the dimension of the Examples

% Note: Examples is a matrix, the last column are the correct categorie
% the first numpat columns are the sample input variable values

% thus for a one input, one output equation the first column is x

% the second column is the category for y

% nsamples is the number of examples stored in Examples

% Interval size must be input, it is max y divided by ncat

% sigma is the deviation value for the gaussians around a data point

% it is squared and depends upon the coarseness required for category

% resolution (try .8 as a start but remember for the PNN to work

% correctly this must be close to correct. Trial and Error usually finds

% it faster than theory in my experience!

% Begin Routine ******************

% Calculate sums of inpat gaussians in terms of deviation from Examples

gaussums- (exp (- ( (Examples (:, 1 :numpat-l) -inpat) .^2) ./(sigma^2) ) ) ;

clg;

axis ('normal') ;

subplot (211), plot(gaussums),grid;

title(' Gaussian Distances From Examplars ');

xlabel('sigma=.l, 400 examples, 50 categories')

% Total sums of Gaussians for each category, select maximum and its index

outsum=zeros (I :ncats) ;

for i-I :nsamples

outsum (Examples (i, numpat) )-outsum (Examples (i, numpat) )+gaussums (i) : end

axis([l,ncats,min(outsum),2*max(outsum)]);

subplot(212),plot(outsum),grid;

title(' Total Sums of Gaussian Values by Category Number '),pause:

axis;

print ;

% Send hard copy to local postscript printer

[outval, numcat ]=max (outsum)

% Completed PNN recall now compare to correct value ************

% Place to put an equation to compare actual to estimated values

% This would be for example an F-15 equation for one part of the

% controller, I put a simple linear one here y = .6x

% I used y increments of .03 for PNN category widths

estval=(numcat/ncats)*maxy

actval=.6*inpat



function Examples-catdat (yvector, numex, ncats, xmat)

intsize-max (yvector)/ncats;
for i-I :numex

for J-I :ncats
if ((yvector (i)>intsize* (j-l))& ((yvector (i)<-intsize*j) ))

Examples (I, i) -xmat (i) ;

Examples (2, i) -j ;

end

end

end

% Generic Function to put input data into categories for Examples

% y is the input matrix, the second row of which contains the category

% index corresponding to the column index of Examples. This lets

% data be input in any category order. There is one row for each

% variable used in inpat, xmat is the input variable matrix from

% which some function has calculated y values provided to catdat



function ov=sdmhybrid(na,wa,wd, ia,A,D,c,hrange,sigma, lrncnt)

% Implimentation of a gaussian hybrid sdm for control
% na - number of addresses used in the sdm (# previous patterns)

% wa - width of input address vector i.e. # of input variables

% wd - width of data for output i.e. # of output variables

% A is address matrix, na rows by wa columns - stored input examples

% D is a matrix of data na rows by wd columns - stored system output values

% ia - input address of new pattern - wa input values
% irncnt is count of frequency of previous examples in active cells

% it may not be used unless distributional information is important

% ov - network's output responses to the new pattern

% gausdist - vector of distances of ia from A (distance defined as gausian)

% hrange - percent of maximum gaussian value (larger means closer match)

% the only values that will be used are greater or equal to hrange*max

% sigma controls the width of the gaussians

% A can be either random addresses or fixed exemplar points in parameter space

% to emulate a pnn in this case I chose the latter
% c is a counter vector storing the number of matches for an address in D

% this occurs with noise if there is more than one example per address

% You must build A, D and c outside this function in matlab at present

% this assumes previous examples stored in A with values D

sigma2=sigma^2;

% calculate distanceof input pattern to gaussian window around previous

% stored patterns total the distances and store in gausdist

for i-l:na, gausdist(i)=sum(exp(-(((ia - A(i,l:wa)).^2)./(sigma2)))); end

% plot(gausdist),title('Gaussian similarity to A'),pause;

% print;
% Make hrange proportional to max range found by gausdist

hrange-hrange*max(gausdist);

% hrange

%convert gausdist to 0,1 selection matrix stored in D

gausdist=(gausdist>=hrange);

% gausdist

% pause;

% plot(gausdist),title('Selection distribution from 0,i transform'), pause;

% update counter weights for selected D values if irn-rcl is learn (+i)

if (irncnt-=l) c = c + gausdist; else

numc=gausdist * c;

% Note c can be a vector stored from previous learning counters

% Here is is being used as a scalar only

% plot(numc),title('Third plot showing vector numc'),pause;
ov=(numc * D)./sum(numc);

% ov

% pause;
end



function status3dsom-tcjsom3(trainset,startpts)

% Routine to test a SOM performance on a random 3D grid. It is also a demo

% of the adequacy of the network's alpha and r values for a training set

axis([-.l I.I -.I I.I]);

% Use this block only if you want a random set of points and plot them

% Unless you want to change the internal grid dimensions use even square

% root number of points

clg;

% this ignores the startpts argument passed to the routine in order to
% build a new set

%startpts-[];
% This part of the code lets you build a distributed random set of points

% for i-l:10 startpts(i,:)-[rand rand rand rand rand rand rand rand rand rand];

%end

% Use this block if you want the points to start at random in a center region

% Numpts should have an even cube root otherwise modify code

%numpts-1000;

%for i-l:numpts
% startpts(i,l)-(.49+rand*.02);

% startpts(i,2)-(.49+rand*.02);

% startpts(i,3)=(.49+rand*.02);

% startpts(i,4)-(.49+rand*.02);

% startpts(i,5)-(.49+rand*.02);

% startpts(i,6)-(.49+rand*.02);

% startpts(i,7)-(.49+rand*.02);

% startpts(i,8)-(.49+rand*.02);

% startpts(i,9)-(.49+rand*.02);

% startpts(i,10)-(.49+rand*.02);
% end

temp-length (startpts) ;

temp2-1ength (trainset) ;
% Show the starting x-y plot to get some idea if ordering is occuring

plot(startpts(:,l),startpts(:,2));

% Set parameter values for alpha and the radius

count-l;

a=.08;

r-.2;

patnum=l;
% set the number of interations at each alpha and radius

for j-l:40000

if (patnum--temp2) patnum-l; else patnum-patnum+l; end

count-count+l;

[nvec,est,wv]-cjsom3(trainset,startpts,r,a,0,patnum);
% Set ratio of decreases for learning rate and radius

a-a*.99999;

% r-r*.99999;

startpts-nvec;

% startpts

% pause;

% Set how often you would like to see the plot in plotsee

plotsee=100;

if(((count/plotsee)-round(count/plotsee))--0)

plot(nvec(:,l),nvec(:,2),'+');

% plot(trainset(:,l),trainset(:,2),'*');

% Use these if you want to see how the radius or alpha rate is changing

count

a

end

end

%hold:

% Plot a comparison of the final results to the ideal results for i00 pts

% plot(trainset(:,l),trainset(:,2),'x')

status3dsom=nvec;

%hold off;



function [ov,m, wv] -cjsom3 (pvec, changevec, bubble, irnrate, testcode, pn)

% Implementation of a 3-D Self Organizing Map for learning Camera-Theta
% relations. Uses mesh defined above, below, left, right, front,back for

% each point in changevec
% if testcode is 1 it returns the net's estimate of the winner other wise

% if 0 it treat's pvec as a training pattern

% irnrate learning rate (proportion of change of previous point values)

% ov = network's structure reconfiguration in response to the new pattern

% dist - vector of distances of patterns from input

% bubble controls the width of influece field of a neuon

ov=changevec;
% Put in a couple checks on the size and value of irnrates
if irnrate<0 Irnrate--irnrate; end

if irnrate>l irnrate=l.0; end

npl=length (pvec) ;
% initialize variables

nailength (changevec) ;

% select a pattern newp from pvec at random

newp--pvec ( (ceil (rand*npl)) , :);

% Use this line if you want to train using all patterns in order
% and omit the above line

%newp=pvec (pn, : );

% calculate distance of stored patterns from new

% pattern and find closest pattern based only on xyz distances

newpvec= (ones (na, I) *newp) ;

dif fs=newpvec-changevec;

% Note: diffs should have and index equal to the space used with more

% complex data e.g. robot arm data this will change to diffs(:,l:3)

% dist=sqrt(sum((diffs(:,l:3) .^2)'));

dist=sum ( (dills (:, 1:3) .^2) " ) ;

[wv, winnum] =min (dist) ;

% if network is only to estimate a value return it in m and stop

if (testcode=-l) m=changevec(winnum,:); return; else m=0; end

% [iv, lnum]=max(dist) ;

% Use these lines if you want to change all points less than bubble each trial

%for j=l:na

% if dist (j) <=bubble

%winnum=j ;

% create links from points to their neighbors to generate a mesh

vecsize=floor ((na) ^ (1/3)) ;

% Note vector should have an even root or explicitly be put in somvectomat call

% change the following x,y and z dimensions accordingly

% refpos is the x,y,z reference coordinate around which neighbors are defined

refpos=somvectomat(winnum, [vecsize vecsize vecsize]);
% Define the 26 coordinates for the neighbors relative to refpos

% Define center neighborhood of a point

uc=[ (refpos(1)) (refpos(2)) (refpos(3)+l)],

de--[ (refpos(1)) (refpos(2)) (refpos(3)-l) ];

ic=[ (refpos(1)-l) (refpos(2)) (refpos(3))];

rc=[(refpos(1)+l) (refpos(2)) refpos(3)];

ulc=[ (refpos (1) -l) (refpos(2)) (refpos(3)+l)];

urc--[(refpos(1)+l) (refpos(2)) (refpos(3)+l)];

dlc=[ (refpos(1)-l) (refpos(2)) (refpos(3)-l)] ;

drc=[(refpos(1)+l) (refpos(2)) (refpos(3)-l)];

% Define front neighborhood (relative to the center point)

uf=[ (refpos(1)) (refpos(2)-l) (refpos(3)+l)];

df =[ (refpos(1)) (refpos(2)-l) (refpos(3)-l)];

if =[ (refpos(1)-l) (refpos (2)-I) (refpos(3)) ];

rf=[(refpos(1)+l) (refpos(2)-l) refpos(3)];

ulf--[ (refpos(1)-l) (refpos(2)-l) (refpos (3) +l"_)];

urf--[ (refpos (1) +l) (refpos(2)-l) (refpos(3)+l)] ;

dlf=[(refpos(1)-l) (refpos (2) -l) (refpos(3)-l)];

drf-[ (refpos (1) +l) (refpos (2) -l) (refpos(3)-l)] ;

cf-[ (refpos(1)) (refpos(2)-l) (refpos(3))];

% Define back neighborhood (relative to center point

ub-[(refpos(1)) (refpos(2)+l) (refpos(3)+l)];



(refpos (2) +1)db- [(refpos (I))

ib-[(refpos(1)-l) (refpos(2)+l)

rb-[(refpos(1)+l) (refpos(2)+l)

ulb-[ (refpos (1) -l) (refpos (2) +l)

urb-[ (refpos (1) +l) (refpos (2) +l)

dlb-[ (refpos(1)-l) (refpos (2) +l)

(refpos (3)-I) ] ;
(refpos (3)) ] ;

refpos (3) ] ;

(refpos (3) +I) ];
(refpos (3) +I) ];

(refpos (3) -I) ];

drb-[(refpos(1)+l) (refpos(2)+l) (refpos(3)-l)];

cb-[(refpos(1)) (refpos(2)+l) (refpos(3))];
% Find out which serial coordinate the neighbors have

ucvec-sommattovec(uc, [vecsize vecsize vecsize]);

lcvec=sommattovec(lc,[vecsize vecsize vecsize]);

dcvec-sommattovec(dc,[vecsize vecsize vecsize]);

rcvec-sommattovec(rc, [vecsize vecsize vecsize]);

ulcvec-sommattovec(ulc,[vecsize vecsize vecsize]);

urcvec-sommattovec(urc,[vecsize vecsize vecsize]);

dlcvec-sommattovec(dlc,[vecsize vecsize vecsize]);

drcvecBsommattovec(drc,[vecsize vecsize vecsize]);

% front block

ufvec-sommattovec(uf, [vecsize vecsize vecsize]);

dfvec-sommattovec(df, [vecsize vecsize vecsize]);

ifvec-sommattovec(if, [vecsize vecsize vecsize]);

rfvec-sommattovec(rf, [vecsize vecsize vecsize]);

ulfvec-son_nattovec(ulf,[vecsize vecsize vecsize]);

urfvec-sommattovec(urf, [vecsize vecsize vecsize]);

dlfvec-sommattovec(dlf,[vecsize vecsize vecsize]);

drfvec-sommattovec(drf,[vecsize vecsize vecsize]);

cfvec-sommattovec(cf,[vecsize vecsize vecsize]);

in startpts

% back block

ubvec=sommattovec(ub,[vecsize vecsize

dbvec=sommattovec(db, [vecsize vecsize

ibvecBsommattovec(ib,[vecsize vecsize

rbvec_sommattovec(rb,[vecsize vecsize

ulbvec=sommattovec(ulb,[vecsize vecsi

vecsize]);

vecsize]);

vecsize]);

vecsize]);

ze vecsize]);

urbvec=sommattovec(urb,[vecsize vecsize vecsize]);

dlbvec-sommattovec(dlb,[vecsize vecsize vecsize]);

drbvec-sommattovec(drb,[vecsize vecsize vecsize]);

cbvec-sommattovec(cb,[vecsize vecsize vecsize]);

% if they are legitimate indexes of the vector use them otherwise do not

% Correct changevec by moving neighborhood points toward the new pattern

% proportional to the nearest pattern's distance

if (ucvec>0) & (ucvec<-na)

changevec (ucvec, :)-changevec (ucvec, :)+...
(wv/dist (ucvec)) * (irnrate) *(diffs (ucvec, :)) ;

if (icvec>0) & (lcvec<-na)

changevec (icvec, :)-changevec (lcvec, :)+. • •

(wv/dist (icvec)) * (irnrate) *(diffs (icvec, :)) ;

% Unique treatement for winning center point

changevec (winnum, :)-changevec (winnum, :)+...

irnrate) *(diffs (winnum, •) ) ;

If (dcvec<0) & (dcvec>=na)

changevec (dcvec, :)-changevec (dcvec, :) +...
wv/dist (dcvec)) * (irnrate) *(diffs (dcvec, :)) ;

if (rcvec>0) & (rcvec<-na)

changevec (rcvec, :)-changevec (rcvec, :) +...

wv/dist (rcvec)) * (Irnrate) * (diffs (rcvec, :) ) ;

if (ulcvec>0) & (ulcvec<-na)

changevec (ulcvec, :)=changevec (ulcvec, :)+.. •

wv/dist (ulcvec)) * (irnrate) * (diffs (ulcvec, :)) ;

if (urcvec>0) & (urcvec<=na)

changevec (urcvec, :)=changevec (urcvec, :) +. • •

(wv/dist (urcvec)) * (irnrate) * (diffs (urcvec, :) ) ;

if (dlcvec>0) & (dlcvec<-na)

changevec (dlcvec, :)-changevec (dlcvec, :) +. ••

(wv/dist (dlcvec)) * (irnrate) * (diffs (dlcvec, :) ) ;

if (drcvec>0) & (drcvec<-na)

changevec (drcvec, :)-changevec (drcvec, :)+. • •

end

end

end

end

end

end

end



(wv/dist (drcvec)) * (irnrate) *(diffs (drcvec, :) ) ; end

% begin front block
if (ufvec>O) & (ufvec<-na)

changevec (ufvec, :)-changevec (ufvec, :)+...

(wv/dist (ufvec)) * (irnrate) * (diffs (ufvec, :)) ; end

if (dfvec>O) & (dfvec<-na)

changevec (dfvec, : )-changevec (dfvec, :)+° . .

wv/dist (dfvec)) * (irnrate) *(diffs (dfvec, :)) ; end

If (ifvec>O) & (ifvec<-na)

changevec (ifvec, :)-changevec (ifvec, :)+...

(wv/dist (ifvec)) * (lrnrate) * (diffs (Ifvec, :) ) ; end

if (rfvec>O) & (rfvec<-na)

changevec (rfvec, :)-changevec (rfvec, :)+...

(wv/dist (rfvec)) * (irnrate) * (diffs (rfvec, :) ) ; end

if (ulfvec>O) & (ulfvec<-na)

changevec (ulfvec, :)-changevec (ulfvec, :)+...

(wv/dist (ulfvec)) * (irnrate) * (diffs (ulfvec, :) ) ; end

if (urfvec>O) & (urfvec<-na)

changevec (urfvec, :)-changevec (urfvec, :)+...

(wv/dist (urfvec)) * (irnrate) * (diffs (urfvec, :) ) ; end
if (dlfvec>O) & (dlfvec<-na)

changevec (dlfvec, :)-changevec (dlfvec, :)+...

(wv/dist (dlfvec)) * (irnrate) * (diffs (dlfvec, :) ) ; end

if (drfvec>O) & (drfvec<-na)

changevec (drfvec, :)=changevec (drfvec, :)+...

(wv/dist (drfvec)) * (irnrate) * (diffs (drfvec, :) ) ; end

if (cfvec>O) & (cfvec<-na)

changevec (cfvec, :)-changevec (cfvec, :)+...

(wv/dist (cfvec)) * (irnrate) * (diffs (cfvec, :)) ; end
% Back block

if (ubvec>O) & (ubvec<-na)

changevec (ubvec, :)-changevec (ubvec, :)+...

(wv/dist (ubvec)) * (lrnrate) * (diffs (ubvec, :)) ; end

if (dbvec>O) & (dbvec<-na)

changevec (dbvec, :)-changevec (dbvec, :)+...

(wv/dist (dbvec)) * (lrnrate)* (diffs (dbvec, :)) ; end

if (ibvec>O) & (ibvec<-na)

changevec (Ibvec, :)-changevec (Ibvec, :)+...
(wv/dist (Ibvec)) * (lrnrate) * (diffs (ibvec, :) ) ; end

if (rbvec>O) & (rbvec<-na)

changevec (rbvec, :)-changevec (rbvec, :)+...

(wv/dist (rbvec)) * (lrnrate) * (diffs (rbvec, :)) ; end

if (ulbvec>O) & (ulbvec<-na)

changevec (ulbvec, :)-changevec (ulbvec, :) +...
(wv/dist (ulbvec)) * (Irnrate) * (diffs (ulbvec, :)) ; end

if (urbvec>O) & (urbvec<-na)

changevec (urbvec, :)-changevec (urbvec, :)+...

(wv/dist (urbvec)) * (irnrate) * (diffs (urbvec, :)) ; end

if (dlbvec>O) & (dlbvec<-na)

changevec (dlbvec, :)=changevec (dlbvec, :)+...
(wv/dist (dlbvec)) * (irnrate) * (diffs (dlbvec, :)) ; end

if (drbvec>O) & (drbvec<-na)

changevec (drbvec, :)-changevec (drbvec, :)+...

wv/dist (drbvec)) * (irnrate) * (diffs (drbvec, :) ) ;

If (cbvec>O) & (cbvec<-na)

changevec (cbvec, :)=changevec (cbvec, :)+...
(wv/dist (cbvec)) * (Irnrate) * (diffs (cbvec, :) ) ; end

% end

% end

ov=changevec;

end



function [alpnext,rnext]-sofmrates(d, alp, r, startd, startr)

% Routine to calculate governing differential equations for time

% varying self-organizing map with dynamic learning of bubble size

% and oscillating learning rates based on method of Hodges and Wu (1990)

% r is neighborhood radius at time t

% alpha is learning rate at time t

% d is minimum distance between input pattern and exemplars at time t

g=d/startd;

s-r/startr;

alpnext-s^g*(exp(-s)*exp(-I/g)*(tanh(l+alp*g)/startr^2)-alp*exp(-a!p));

rnext-r+(-(s^g)*(exp(-(l-alp)))*exp(-I/s)*exp((-(l-g))))-(s^2)*exp(-(s^2));



function status3dsom=tregsom(trainset,startpts, numit, netsize,nnum)

% Routine to test a SOM performance on a random 3D grid. It is also a demo

% of the Infolding Network using the proportional win learning rule
% and a stochastic point sampling logic

% numit is the number of learning trials desired

% trainset is the matrix of potential training patterns

% startpts is the set of points

% netsize is the number of points desired in startpts

% nnum is the size of the neighborhood for this network test
axis([-.l I.I -.i I.I]);

clg;

% this code ignores the startpts argument passed to the routine in order to

% build a new set of a given number of points

startpts- [] ;

% This part of the code lets you build a distributed random set of points

%for i=l:netsize startpts(i, :)=[rand rand rand rand rand rand rand rand rand rand];
%end

% Use this block if you want the points to start at random in a center region

numpt s-net si z e;

for i=l :numpts
startpts (i, i)- (. 49+rand*.02) ;

startpts (i,2)_ (. 49+rand*.02) ;

startpts(i,3)=(.49+rand*.02) ;

startpts (i, 4)- (. 49+rand*. 02) ;

startpts (i, 5) - (. 49+rand* .02) ;

startpts (i, 6) = (.49+rand*. 02) ;

startpts (i, 7)- (. 49+rand*. 02) ;

startpts (i, 8) = (.49+rand*.02) ;

startpts (i, 9)- (.49+rand*. 02) ;

startpts (i, 10) m (. 49+rand*. 02) ;
end

tempElength (startpts) ;

temp2_length (trainset) ;

% Show the starting x-y plot to get some idea if crdering is occuring

plot (startpts (:, I), startpts (:, 2) ) ;
count-I ;

% Determine how large the neighborhood is to be for this test

%nnumR2 ;

% patnum is used if you want to sequentially train patterns rather

% than select them at random from the training set

patnum-i ;
% Set the number of interations

for j=l :numit

if (patnuml-temp2) patnum=l; else patnum=patnum+l; end
counttcount+l ;

[nvec, e st, wv] -regsom (trainset, startpt s, nnum, 0, numit ) ;

startpts=nvec;

% Set how often you would like to see the plot in plotsee

plotsee=100 ;

if (((count/plotsee) -round (count/plotsee))=-0)

plot (nvec (: ,I) ,nvec (:, 2) ,'+' ) ;
count

end

end

status3dsom--nvec ;



function [ov, m, wv]-regsom(pvec, changevec,neighnum, testcode,numreps)

% Implementation of a 3-D Self Organizing Map for learning Camera-Theta

% uses proportional win rule with slow learning rate based on number
% of trials and number of points, designed to match distribution near end

% testcode is 1 or 0 and used to access network if desired

% neighnum is the number of nearest neighbors used in rule

ov-changevec;

npl=length(pvec);
% initialize variables

na=length(changevec);

learnrate-npl/numreps;

% select a pattern newp from pvec at random

newp-pvec((ceil(rand*npl)),:);

% Use this line if you want to train using all patterns in order
% and omit the above line

%newp-pvec(pn,:);
% calculate distance of stored patterns from new

% pattern and find closest pattern based only on xyz distances
fixit-ones(na, l);

newpvec=(fixit*newp);

diffslnewpvec-changevec;
% Note: diffs should have and index equal to the space used with more

% complex data e.g. robot arm data this will change to diffs(:,l:3)

%dist=sqrt(sum((diffs(:,l:3).^2)'));

dist=sum((diffs(:,l:3).^2)');

[sortvals,indexx]=sort(dist);
% if network is only to estimate a value return it in m and stop

if (testcode--l) m=changevec(winnum,:); return; else m-0; end

for j-l:neighnum
if (sortvals(j)--0) divterm=0; else divterm=sortvals(1)/sortvals(j); end

cval-ceil(rand*na);

changevec (cval, :)-changevec (indexx (j) , :)+...

learnrate* (diffs (indexx (j) , :) ) *divterm;

end

ov-changevec;

wv=sortvals(l,:);



function status3dsom-tcjsom3(trainset,startpts)
% Routine to test a SOMperformance on a random 3D grid. It is also a demo

% of the adequacy of the network's alpha and r values for a training set

axis([-.l I.i -.i i.i]);

% Use this block only if you want a random set of points and plot them

% Unless you want to change the internal grid dimensions use even square

% root number of points

clg;

% this ignores the startpts argument passed to the routine in order to
% build a new set

startpts-[];

% This part of the code lets you build a distributed random set of points

% for i-l:10 startpts(i, :)=[rand rand rand rand rand rand rand rand rand rand];

%end

% Use this block if you want the points to start at random in a center region

% Numpts should have an even cube root otherwise modify code

numpts=125;

for i=l:numpts

startpts(i,l)E(.49+rand*.02);

startpts(i,2)=(.49+rand*.02);

startpts(i,3)-(.49+rand*.02);

startpts(i,4)-(.49+rand*.02);

startpts (i, 5) = (.49+rand* .02) ;

startpts (i, 6)- (.49+rand* .02) ;

startpts(i,7)=(.49+rand*.02) ;

startpts (i, 8) = (.49+rand*. 02) ;

startpts(i,9)=(.49+rand*.02);

startpts (i, I0) - (. 49+rand*. 02) ;
end

temp=length (startpts) :

temp2=length(trainset);

% Show the starting x-y plot to get some idea if ordering is occuring

plot(startpts(:,l),startpts(:,2));

% Set parameter values for alpha and the radius
countBl;

a-.08;

rm.2;

patnum11;

% set the number of interations at each alpha and radius

for j=l:lS000

if (patnum==temp2) patnum=l; else patnum=patnum+l; end
count=count+l;

a=l.0;

[nvec,est,wv]=cjsom3(trainset,startpts,r,a, 0,patnum);

% Set ratio of decreases for learning rate and radius
%a=a*.99999;

% r-r*.99999;

startpts=nvec;

% startpts

% pause;

% Set how often you would like to see the plot in plotsee

plotsee=100;

if(((count/plotsee)-round(count/plotsee))==0)

plot(nvec(:,l),nvec(:,2),'+');

% plot(trainset(:,l),trainset(:,2),'*');

% Use these if you want to see how the radius or alpha rate is changing
count

a
end

end

%hold;

% Plot a comparison of the final results to the ideal results for I00 pts

% plot(trainse_(:,l),trainset(:,2),'x')

status3dsom=nvec;

%hold off;



function Joy, m, wv] -cj som3 (pvec, changevec, bubble, irnrate, testcode, pn)

% Implementation of a 3-D Self Organizing Map for learning Camera-Theta
% relations. Uses mesh defined above, below, left, right, front,back for

% each point in changevec
% if testcode is 1 it returns the net's estimate of the winner other wise

% if 0 it treat's pvec as a training pattern

% Irnrate learning rate (proportion of change of previous point values)
% ov - network's structure reconfiguration in response to the new pattern

% dist - vector of distances of patterns from input

% bubble controls the width of influece field of a neuon

ov=changevec;
% Put in a couple checks on the size and value of irnrates
if irnrate<0 irnrate--irnrate; end

if irnrate>l irnrate-l.0; end

npl=length (pvec) ;
% initialize variables

na-length (changevec) ;

% select a pattern newp from pvec at random

newp-pvec ( (ceil (rand*npl)) , :);
% Use this line if you want to train using all patterns in order

% and omit the above line

%newp=pvec (pn, :) ;
% calculate distance of stored patterns from new

% pattern and find closest pattern based only on xyz distances

newpvec- (ones (na, I) *newp) ;

dif f s-newpvec-changevec;
% Note: diffs should have and index equal to the space used with more

% complex data e.g. robot arm data this will change to diffs(:,l:3)

% dist=sqrt (sum( (diffs (:, 1:3) .^2) ') );

dist=sum((diffs(:,l:3).^2)');

[wv, winnum] =min (dist) ;

% if network is only to estimate a value return it in m and stop

if (testcode--l) m-changevec(winnum, :); return; else m=0; end

% [iv, inum]-max (dist) ;
% Use these lines if you want to change all points less than bubble each trial

%for j-l:na
% if dist (j) <-bubble

%winnum-j ;
% create links from points to their neighbors to generate a mesh

vecsize-floor ((na) ^ (1/3)) ;
% Note vector should have an even root or explicitly be put in somvectomat call

% change the following x,y and z dimensions accordingly

% refpos is the x,y,z reference coordinate around which neighbors are defined

refpos-somvectomat(winnum, [vecsize vecsize vecsize]);
% Define the 26 coordinates for the neighbors relative to refpos

% Define center neighborhood of a point

uc _[ (refpos(1)) (refpos(2)) (refpos (3) +l) ];

dc =[(refpos(1)) (refpos(2)) (refpos(3)-l)];

ic-[ (refpos (I)-I) (refpos (2)) (refpos(3)) ] ;

rc--[(refpos(1)+l) (refpos(2)) refpos(3)];

ulc-[(refpos(1)-l) (refpos(2)) (refpos(3)+l)];

urc=[(refpos(1)+l) (refpos(2)) (refpos(3)+l)];

dlc-[ (refpos (1) -l) (refpos(2)) (refpos(3)-l) ] ;

drc-[(refpos(1)+l) (refpos(2)) (refpos(3)-l)];
% Define front neighborhood (relative to the center point)

ufz[(refpos(1)) (refpos(2)-l) (refpos(3)+l)];

df =[ (refpos(1)) (refpos(2)-l) (refpos(3)-l) ];

if-[(refpos(1)-l) (refpos(2)-l) (refpos(3))];

rf-[(refpos(1)+l) (refpos(2)-l) refpos(3)];

ulf-[ (refpos(1)-l) (refpos(2)-l) (refpos(3)+l)] ;

urf-[ (refpos (1) +l) (refpos (2) -l) (refpos(3)+l)] ;

dlf-[(refpos(1)-l) (refpos (2) -l) (refpos(3)-l)];

drf-[(refpos(1)+l) (refpos (2) -l) (refpos(3)-l)]:

cf-[ (refpos(1)) (refpos(2)-l) (refpos(3)) ] ;

% Define back neighborhood (relative to center point

ub=[(refpos(1)) (refpos (2) +l) (refpos(3)+l)];



db-[ (refpos (I))
ib= [ (refpos (I) -i)
rb- [ (refpos (I) +i)
ulb-[ (refpos (I) -i)
urb-[ (refpos (i) +I)
dlb-[ (refpos (I)-I)
drb=[ (refpos (i) +i)

(refpos (2)+1)
(refpos (2) +I)

(refpos (2) +I)
(refpos (2) +I)
(refpos (2) +I)
(refpos (2) +I)

(refpos (2) +I) (refpos (3)-I) ] ;
(refpos (3)) ] ;
refpos (3) ] ;

(refpos (3) +i) ] ;
(refpos (3) +I) ] ;
(refpos (3) -I) ] ;
(refpos (3) -i) ] ;

cb-[(refpos(1)) (refpos (2) +l) (refpos(3))];
% Find out which serial coordinate the neighbors have in startpts
ucvec-sommattovec(uc, [vecsize vecsize vecsize]) ;
icvec-sommattovec(ic, [vecsize vecsize vecsize]) ;
dcvec-sommattovec(dc, [vecsize vecsize vecsize]) ;
rcvec-sommattovec(rc, [vecsize vecsize vecsize]) ;
ulcvec-sommattovec(ulc, [vecsize vecsize vecsize]);
urcvec-sommattovec(urc, [vecsize vecsize vecsize]);
dlcvec-sommattovec(dlc, [vecsize vecsize vecsize]);
drcvec=sommattovec(drc, [vecsize vecsize vecsize]) ;
% front block
ufvec=sommattovec(uf, [vecsize vecsize vecsize]) ;
dfvec=sommattovec(df, [vecsize vecsize vecsize]);
ifvec=sommattovec(if, [vecsize vecsize vecsize]) ;
rfvec-sommattovec(rf, [vecsize vecsize vecsize]) ;
ulfvec=sommattovec(ulf, [vecsize vecsize vecsize]) ;
urfvec=sommattovec(urf, [vecsize vecsize vecsize]) ;
dlfvec=sommattovec(dlf, [vecsize vecsize vecsize]) ;
drfvec=sommattovec(drf, [vecsize vecsize vecsize]) ;
cfvec-sommattovec(cf, [vecsize vecsize vecsize]) ;
% back block •
ubvec=sommattovec(ub, [vecsize vecsize vecsize]);
dbvec=sommattovec(db, [vecsize vecsize vecsize]);
ibveclsommattovec(ib, [vecsize vecsize vecsize]);
rbvec=sommattovec(rb, [vecsize vecsize vecsize]);
ulbvec--sommattovec(ulb, [vecsize vecsize vecsize]) ;
urbvec=soxmnattovec(urb, [vecsize vecsize vecsize]) ;
dlbvec=sommattovec(dlb, [vecsize vecsize vecsize]) ;
drbvec-sommattovec(drb, [vecsize vecsize vecsize]);
cbvec=sommattovec(cb, [vecsize vecsize vecsize]);
% if they are legitimate indexes of the vector use them otherwise do not
% Correct changevec by moving neighborhood points toward the new pattern
% proportional to the nearest pattern's distance
if (ucvec>0) &(ucvec<-na)
changevec (ucvec, : )mchangevec (ucvec, : ) +...
(wv/dist (ucvec))* (irnrate) * (diffs (ucvec, : ) ) ; end
if (icvec>0) &(icvec<=na)
changevec (icvec, : )=changevec (icvec, :) +...
(wv/dist (Icvec))* (irnrate) * (diffs (icvec, : ) ) ; end
% Unique treatement for winning center point
changevec (winnum, : ) =changevec (winnum, :)+...

(irnrate) * (diffs (winnum, :)) ;

if (dcvec<0) & (dcvec>=na)

changevec (dcvec, :)=changevec (dcvec, :)+...
(wv/dist (dcvec)) * (irnrate) * (diffs (dcvec, :) ); end

if (rcvec>0) & (rcvec<=na)

changevec (rcvec, :)=changevec (rcvec, :)+...
(wv/dist (rcvec)) * (irnrate) * (diffs (rcvec, :) ); end

if (ulcvec>0) & (ulcvec<=na)

changevec (ulcvec, :)-changevec (ulcvec, :)+...

(wv/dist (ulcvec)) * (irnrate) * (diffs (ulcvec, :) ) ; end

if (urcvec>0) & (urcvec<=na)

changevec (urcvec, :) =changevec (urcvec, :)+...

(wv/dist (urcvec)) * (irnrate) * (diffs (urcvec, :) ) ; end

if (dlcvec>0) & (dlcvec<=na)

changevec (dlcvec, :)Echangevec (dlcvec, :)+...

(wv/dist (dlcvec)) * (irnrate) * (diffs (dlcvec, :) ) ; end

if (drcvec>0) & (drcvec<--na)

changevec (drcvec, :)-changevec (drcvec, :)+...



(wv/dist (drcvec)) * (Irnrate) * (diffs (drcvec, :) ) ; end

% begin front block
if (ufvec>O) & (ufvec<-na)

changevec (ufvec, :)-changevec (ufvec, :)+...
(wv/dist (ufvec)) * (lrnrate) * (diffs (ufvec, :) ); end

if (dfvec>O) & (dfvec<ana)

changevec (dfvec, :)-changevec (dfvec, :) +...

(wv/dist (dfvec)) * (irnrate) *(diffs (dfvec, :)) ; end

if (ifvec>O) & (ifvec<-na)

changevec (ifvec, :)-changevec (ifvec, :)+...

(wv/dist (ifvec)) * (irnrate) * (diffs (Ifvec, :)) ; end

if (rfvec>O) & (rfvec<-na)

changevec (rfvec, :)-changevec (rfvec, :)+...

(wv/dist (rfvec)) * (irnrate) * (diffs (rfvec, :)) ; end

if (ulfvec>O) & (ulfvec<-na)

changevec (ulfvec, :)-changevec (ulfvec, :)+...
(wv/dist (ulfvec)) * (irnrate) * (diffs (ulfvec, :)) ; end

if (urfvec>O) & (urfvec<-na)

changevec (urfvec, :)-changevec (urfvec, :)+...

(wv/dist (urfvec)) * (irnrate) * (diffs (urfvec, :)) ; end

if (dlfvec>O) & (dlfvec<-na)

changevec (dlfvec, :)-changevec (dlfvec, :) +...

(wv/dist (dlfvec)) * (irnrate) * (diffs (dlfvec, :) ) ; end

if (drfvec>O) & (drfvec<-na)

changevec (drfvec, :)-changevec (drfvec, :)+...

(wv/dist (drfvec)) * (irnrate) * (diffs (drfvec, :) ) ; end

if (cfvec>O) & (cfvec<--na)

changevec (cfvec, :)-changevec (cfvec, :)+...

(wv/dist (cfvec)) * (irnrate) * (diffs (cfvec, :)) ; end

% Back block

if (ubvec>O) & (ubvec<-na)

changevec (ubvec, :)-changevec (ubvec, :)+...
(wv/dist (ubvec)) * (irnrate) * (diffs (ubvec, :) ) ; end

if (dbvec>O) & (dbvec<-na)

changevec (dbvec, :)-changevec (dbvec, :)+...

(wv/dist (dbvec)) * (irnrate) * (diffs (dbvec, :) ) ; end

if (Ibvec>O) & (ibvec<=na)

changevec (Ibvec, :)-changevec (Ibvec, :)+...

(wv/dist (ibvec)) * (irnrate)* (diffs (ibvec, :) ) ; end

if (rbvec>O) & (rbvec<-na)

changevec (rbvec, :)-changevec (rbvec, :)+...

(wv/dist (rbvec)) * (irnrate) * (diffs (rbvec, :) ) ; end

if (ulbvec>O) & (ulbvec<-na)

changevec (ulbvec, :)=changevec (ulbvec, :)+...
(wv/dist (ulbvec)) * (Irnrate) * (diffs (ulbvec, :)) ; end

if (urbvec>O) & (urbvec<-na)

changevec (urbvec, :)-changevec (urbvec, :)+...
(wv/dist (urbvec)) * (irnrate) * (diffs (urbvec, :) ) ; end

if (dlbvec>O) & (dlbvec<-na)

changevec (dlbvec, :)mchangevec (dlbvec, :)+...
(wv/dist (dlbvec)) * (irnrate) * (diffs (dlbvec, :) ) ; end

if (drbvec>O) & (drbvec<--na)

changevec (drbvec, :)-changevec (drbvec, :)+...

(wv/dist (drbvec)) * (irnrate) * (diffs (drbvec, :) ) ; end

if (cbvec>O) & (cbvec<--na)

changevec (cbvec, :)=changevec (cbvec, :)+...

(wv/dist (cbvec)) * (irnrate) * (diffs (cbvec, :) ) ; end

% end

% end

ov-changevec;



function status3dsom-tpullsom(trainset,startpts, numit, netsize,nnum)

% Routine to test a SOM performance on a random 3D grid. It is also a demo

% of the Infolding Network using the proportional win learning rule
% and a stochastic point sampling logic

% numit is the number of learning trials desired

% trainset is the matrix of potential training patterns

% startpts is the set of points

% netsize is the number of points desired in startpts

% nnum is the size of the neighborhood for this network test

axis([-.l i.i -.I i.I]);

clg;

% this code ignores the startpts argument passed to the routine in order to

% build a new set of a given number of points

startpts=[];

% This part of the code lets you build a distributed random set of points

for i=l:netsize startpts(i,:)=[rand rand rand rand rand rand rand rand rand rand];
end

% Use this block if you want the points to start at random in a center region

%numptsznetsize;

%for i=l:numpts

% startpts(i,l)=( 49+rand*.02);

% startpts(i,2)=( 49+rand*.02);

% startpts(i,3)=( 49+rand*.02);

% startpts(i,4)=( 49+rand*.02);

% startpts(i,5)=( 49+rand*.02);

% startpts(i,6)=( 49+rand*.02);

% startpts(i,7)=( 49+rand*.02);

% startpts(i,8)=( 49+rand*.02);

% startpts(i,9)=( 49+rand*.02);

% startpts(i,10)=(.49+rand*.02);
% end

temp=length(startpts);

temp2zlength(trainset);

% Show the starting x-y plot to get some idea if ordering is occuring

plot(startpts(:,l),startpts(:,2));
count=l;

% Determine how large the neighborhood is to be for this test

%nnum=2;

% patnum is used if you want to sequentially train patterns rather

% than select them at random from the training set

patnum=l;
% Set the number of interations

for j=l:numit

if (patnum==temp2) patnum=l; else patnum=patnum+l; end
count=count+l;

[nvec,est,wv]=pullsom(trainset,startpts,nnum, 0,patnum);

startpts=nvec;

% Set how often you would like to see the plot in plotsee

plotsee=100;

if(((count/plotsee)-round(count/plotsee))==0)

plot(nvec(:,l),nvec(:,2),'+');

count
end

end

status3dsom=nvec;



function [or, m, wv] -pullsom (pvec, changevec, neighnum, testcode, pn)

% Implementation of a 3-D Self Organizing Map for learning Camera-Theta

% using and infolding rule taking random points and folding into locations
% intermediate between new point and closest neighbors
% testcode is 1 or 0 and used to access network if desired

% neighnum is the number of nearest neighbors used in rule

% pn is

ov-changevec;

npl-length (pvec) ;
% initialize variables

na-length (changevec) ;

% select a pattern newp from pvec at random

newp-pvec ( (ceil (rand*npl)) , :) ;
% Use this line if you want to train using all patterns in order
% and omit the above line

%newp-pvec (pn, :) ;

% calculate distance of stored patterns from new

% pattern and find closest pattern based only on xyz distances

fixit-ones (na, i) ;

newpvec- (fixit*newp) ;

dif f s-newpvec-changevec :

% Note: diffs should have and index equal to the space used with more

% complex data e.g. robot arm data this will change to diffs(:,l:3)

%dist-sqrt (sum( (diffs (:, 1:3) .^2) ' ) ) ;
dist-sum((diffs(:,l:3) .^2)');

[sortvals, indexx] -sort (dist) ;

% if network is only to estimate a value return it in m and stop

if (testcode--1) m-changevec(winnum, :); return; else m-0; end

for j-1 :neighnum

if (sortvals(j)--0) divterm-0; else divterm-sortvals(1)/sortvals(j) ; end
cval-ceil (rand*na) ;

changevec (cval, :)-changevec (indexx (j) , :)+...

(diffs (indexx (j), :) )*divterm;

end

ov-changevec;

wv-sortvals (I, :) ;



function error-somnettest (testset, somset, numtests, numneigh)

% general k nearest neighbor rule version of somnettest.m

% numneigh is the number of nearest neighbors to be averaged

% Routine to test cJsom3d.m by picking numtest random values from

% testset picking minimum from the file that

% cjsom3d.m produced to capture the mesh, getting joint angles out, calculating

% the xyz for those angles and comparing with the

% exact xyz from testset, error is a matrix of each mean squared error of

% in cartesian space

b=length (testset) ;

e-length (somset ) ;

for m-l:e fixl(m,l)=l; end
for i-l:numtests

i

index=ceil(rand * length(testset));

tval-testset (index, 4 :7) ;

newpvec- (fixl*tval) ;

diffs-newpvec-somset ( :, 4 :7) ;

distzsqrt (sum ((diffs. ^2) ') ) ;

[wv, winnum] -sort (dist) ;

winner=zeros (i, 3) ;

for k-i :numneigh
winner-winner + somset(winnum(k),8:10) ;

end

winner-winner /numneigh;

xyzest=rob3dfeval (. 6, .4, winner) ;

difxyz=testset (index, 1 :3) -xyzest;

error (i) =sqrt (sum (difxyz. ^2) ) ;
end



function netstats(vector)

med=median (vect or )

xbar--mean (vector) --

deviation-std (vector)

maximum-max (vector)

minimum-rain (vector)

plot (vector)
return


